Please wait a minute...
J4  2010, Vol. 44 Issue (1): 209-212    DOI: 10.3785/j.issn.1008-973X.2010.01.037
光学仪器     
聚合物电致发光器件的电流限制机制
朱德喜,叶辉,王军培,甄红宇
(浙江大学 现代光学仪器国家重点实验室,浙江 杭州 310027)
Current limitation mechanism of polymer light-emitting devices
ZHU De-xi, YE Hui, WANG Jun-pei, ZHEN Hong-yu
(State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China)
 全文: PDF  HTML
摘要:

以共轭聚合物聚(2-甲氧基-5-(2′-乙基-己氧基)-1,4-对苯乙炔)为发光材料制备复合阴极结构(LiF/Al)的聚合物电致发光器件.针对不同发光层厚度和阴极修饰层厚度的器件进行电流-电压测试,研究引起器件电流限制的机制.结果表明,单金属阴极器件的电流特性为载流子输运体限制机制;当阴极修饰层(LiF)厚度为2 nm左右时,电流特性以载流子注入限制为主;而当阴极修饰层为其他厚度时,2种限制机制同时存在.对具有不同阴极修饰层厚度的器件的电流-电压特性提出理论模型,模拟结果与试验数据较为符合.

Abstract:

Conjugated polymer (poly(2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene vinylene), MEH-PPV) based polymer light-emitting devices (PLEDs) were fabricated with composite cathode (LiF/Al). The current-voltage characteristics of the devices with different thickness of LiF layer and MEH-PPV layer were measured and analyzed in order to investigate the current limitation mechanism of PLEDs. The results show that the charge carrier transport limitation exhibits in the case of single metal cathode, while the charge carrier injection limitation is dominant when the LiF buffer layer is at a certain thickness (2 nm here). When the LiF buffer layer deviates from 2 nm, the current is limited by both two current limitation mechanisms. A simulation model about the current-voltage characteristic of the devices with different LiF layer thickness was developed, and the calculated results agreed well with the experimental data.

出版日期: 2010-02-26
:  TN 383  
基金资助:

国家博士后科学基金资助项目(20070410394).

通讯作者: 叶辉,男,教授.     E-mail: huiye@zju.edu.cn
作者简介: 朱德喜(1982-),男,浙江乐清人,博士生,从事聚合物有机电致发光研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

朱德喜, 叶辉, 王军培, 等. 聚合物电致发光器件的电流限制机制[J]. J4, 2010, 44(1): 209-212.

SHU De-Chi, XIE Hui, WANG Jun-Pei, et al. Current limitation mechanism of polymer light-emitting devices. J4, 2010, 44(1): 209-212.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.01.037        http://www.zjujournals.com/eng/CN/Y2010/V44/I1/209

[1] TANG C W, VANSLYKE S A. Organic electroluminescent diodes [J]. Applied Physics Letters, 1987, 51(12): 913-915.
[2] BURROUGHES J H, BRADLEY D C, BROWN A R, et al. Light-emitting diode based on conjugated polymers [J]. Nature, 1990, 347: 539-543.
[3] STOSSEL M, STAUDIGEL J, STEUBER F, et al. Electron injection and transport in 8-hydroxyquinoline aluminum [J]. Synthetic Metals, 2000, 111/112: 19-24.
[4] JABBOUR G E, KIPPELEN B, ARMSTRONG N R, et al. Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices [J]. Applied Physics Letters, 1998, 73(9): 1185-1187.
[5] SCHLAR R, PARKINSON B A, LEE P A, et al. Photoemission spectroscopy of LiF coated Al and Pt electrodes [J]. Journal of Applied Physics, 1998, 84(12): 6729-6736.
[6] TANG H, LI F, SHINAR J. Bright high efficiency blue organic light-emitting diodes with Al2O3/Al cathodes [J]. Applied Physics Letters, 1997, 71(18): 2560-2562.
[7] BURROWS P E, SHEN Z, BULOVIC V, et al. Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices [J]. Journal of Applied Physics, 1996, 79(10): 7991-8006.
[8] DONGGE M, HUMMELGEN I A, BIN H, et al. Electron and hole transport in a green-emitting alternating block copolymer: space-charge-limited conduction with traps [J]. Journal of Physics D: Applied Physics, 1999, 32: 2568-2572.
[9] BURROWS P E, FORREST S R. Electroluminescence from trap-limited current transport in vacuum deposited organic light emitting devices [J]. Applied Physics Letters, 1994, 64(17): 2285-2287.
[10] TAKUYA O, CHO D C, KAZUE K, et al. Numerical analysis of the carrier behavior of organic light-emitting diode: comparing a hopping conduction model with a SCLC model [J]. Thin Solid Films, 2003, 438/439: 171-176.
[11] WOFGANG B, STEFAN B, ANTON G M. Device physics of organic light-emitting diodes based on molecular materials [J]. Organic Electronics, 2001, 2(1): 1-36.
[12] MORI T, FUJIKAWA H, TOKITO S, et al. Electronic structure of 8-hydroxyquinoline aluminum/LiF/Al interface for organic electroluminescent device studied by ultraviolet photoelectron spectroscopy [J]. Applied Physics Letters, 1998, 73(19): 2763-2765.
[13] IHM K W, KANG T H, KIM K J, et al. Band bending of LiF/Alq3 interface in organic light-emitting diodes [J]. Applied Physics Letters, 2003, 83(14): 2949-2951.
[14] HEIL H, STEIGER J, KARG S, et al. Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode [J]. Journal of Applied Physics, 2001, 89(1): 420-424.
[15] MARTIN S J, LUPTON J M, SAMUEL I D W, et al. Modelling temperature-dependent current-voltage characteristics of an MEH-PPV organic light emitting device [J]. Journal of Physics: Condensed Matter, 2002, 14(42): 9925-9933.
[16] JONSSON S K M, BIRGERSON J, CRISPIN X, et al. The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)- polystyrenesulfonic acid (PEDOT-PSS) films [J]. Synthetic Metals, 2003, 139(1): 1-10.
[17] PARK J H, PARK O O, YU J W, et al. Effect of polymer-insulating nanolayers on electron injection in polymer light-emitting diodes [J]. Applied Physics Letters, 2004, 84(10): 1783-1785.
[18] PARKER I D. Carrier tunneling and device characteristics in polymer light-emitting diodes [J]. Journal of Applied Physics, 1994, 75(3): 1656-1666.

No related articles found!