Please wait a minute...
J4  2010, Vol. 44 Issue (1): 184-189    DOI: 10.3785/j.issn.1008-973X.2010.01.033
土木与建筑工程     
卷曲折叠充气管展开过程的数值分析及实验研究
肖潇1,2,关富玲1,徐彦1
(1.浙江大学 空间结构研究中心,浙江 杭州 310027; 2.南华大学 城市建设学院,湖南 衡阳 421001)
Numerical analysis and experimental study on deployment process of coil-folded inflatable tube
XIAO Xiao1,2, GUAN Fu-ling1, XU Yan1
(1. Space Structures Research Center, Zhejiang University, Hangzhou 310027, China;
2. School of Urban Construction, Nanhua University, Hengyang 421001, China)
 全文: PDF  HTML
摘要:

采用基于能量函数的弹簧-质点模型,对卷曲折叠充气管的充气展开弯矩进行推导,考虑在充气管展开过程中薄膜自接触以及充气管中加劲钢卷尺产生的弯矩.通过Fortran语言编程对卷曲折叠充气管的充气展开过程进行数值模拟,并与利用气浮导轨消除重力,对同样条件的卷曲折叠充气管在不同时刻的展开速率的测试结果进行对比.数值分析与实验结果吻合良好,说明弹簧-质点模型方法能够很好地模拟卷曲折叠充气管的展开过程和动力性能.与传统的有限元方法相比,弹簧-质点模型方法的优点是建模简单,能够有效分析复杂充气结构的展开.研究不同充气速率对充气管的展开动力性能的影响,分析表明,充气速率增大,同一时刻的展开速率明显增大.

Abstract:

The inflatable deployment of coil-folded tube was simulated by spring-mass model based on energy function. Firstly, the inflation deployment moment of the coil-folded tube was derived, considering the self-contact of membrane in the deployment process and the moment induced by the steel tape in the inflatable tube wall. Secondly, a simulation program in Fortran code for the deployment process of inflatable tubes was developed. Thirdly, the inflatable deployment experiment of the coil-folded tube in the same conditions on an air track which eliminated the gravity effect was conducted. The numerical solutions of the deployment velocity were compared with the experimental results, and the good agreementverified the spring-mass model method could simulate the deployment process and dynamic characteristics of thecoil-folded inflatable tube very well. Compared with the conventional finite element method, the advantage of this new method lies in its ability to analyze the deployment of complex deployable structures effectively with a comparatively simple modeling process. Analysis of the influence of inflation rate on deployment dynamic characteristics shows that large inflation rate leads to large deployment velocity.

出版日期: 2010-02-26
:  TB 12  
基金资助:

民用航天科研预先研究项目(C1320060312).

作者简介: 肖潇(1968-),男,湖南衡阳人,讲师,博士生,从事空间结构、展开结构以及结构抗震研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

肖潇, 关富玲, 徐彦. 卷曲折叠充气管展开过程的数值分析及实验研究[J]. J4, 2010, 44(1): 184-189.

XIAO Xiao, GUAN Fu-Ling, XU Pan. Numerical analysis and experimental study on deployment process of coil-folded inflatable tube. J4, 2010, 44(1): 184-189.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.01.033        http://www.zjujournals.com/eng/CN/Y2010/V44/I1/184

[1] HUANG J, FANG H, LOPEZ B, et al. The development of inflatable array antennas [C]∥ Space 2003 Conference. Long Beach: AIAA, 2003-6320.
[2] CHODIMELLA S P, MOORE J D, OTTO J, et al. Design evaluation of a large aperture deployable antenna [C]∥ 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Newport: AIAA, 2006-1603.
[3] FANG H, LOU M, HUANG J. Development of a 7-meter inflatable reflect array antenna [C]∥ 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Palm Springs: AIAA, 2004-1502.
[4] HUANG J, FANG H, LOVICK R, et al. The development of large flat inflatable antenna for deep-space communications [C]∥ Space 2004 Conference and Exhibit. San Diego: AIAA, 2004-6112.
[5] MALONE P K, WILHRNS G T. Lightweight inflatable solar array [J]. Journal of Propulsion and Power, 1996, 12(5): 1-7.
[6] HAUG E, PROTARD J B, MILCENT G, et al. The numerical simulation of the inflation process of space rigidized antenna structures [C]∥ Spacecraft Structures and Mechanical Testing. Noordwijk, Nederland: ESA, 1991: 861-869.
[7] WANG J T, JOHNSON A R. Deployment simulation of ultra-lightweight inflatable structures [C]∥ 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Denver: AIAA, 2002-1261.
[8] WANG J T, JOHNSON A R. Deployment simulation methods for ultra-lightweight inflatable structures [R]. NASA/TM- 2003-212410, 2003.
[9] SALAMA M, KUO C P, LOU M. Simulation of deployment dynamics of inflatable structures [J]. AIAA Paper, 99-1521.
[10] MIYAZAKI Y, UCHIKI M. Deployment dynamics of inflatable tube [J]. AIAA Paper, 2002-1254.
[11] 刘晓峰,谭惠丰,杜星文. 充气太空管展开模拟[J]. 哈尔滨工业大学学报, 2004, 36(5): 685-687.
LIU Xiao-feng, TAN Hui-feng, DU Xing-wen. Deployment simulation of inflatable space tube [J]. Journal of Harbin Institute of Technology, 2004, 36(5): 685-687.
[12] LIENARD S, LEFEVRE Y. Modeling and analysis of the deployment of a rolled inflatable beam using MSC-DYTRAN [J]. AIAA Paper, 2005-1968.
[13] FANG H, LOU M, HAH J. Deployment study of a self-rigidizable inflatable boom [J]. Journal of Spacecraft and Rockets, 2006, 43(1): 25-30.
[14] 徐彦,关富玲,管瑜. 充气可展天线精度分析和形面调整[J]. 空间科学学报, 2006, 26(4): 292-297.
XU Yan, GUAN Fu-ling, GUAN Yu.Precision analysis and shape adjustment of inflatable antenna [J]. Chinese Journal of Space Science, 2006, 26(4): 292-297.

[1] 姜文锋, 刘旭, 谢小燕. 体三维显示中屏幕机械运动误差对显示的影响[J]. J4, 2010, 44(5): 1038-1042.