Please wait a minute...
J4  2009, Vol. 43 Issue (12): 2309-2313    DOI: 10.3785/j.issn.1008-973X.2009.12.032
金属学与金属工艺     
过程集成模型铝合金轮毂疲劳寿命预测
童水光,徐立,刘岩,张响
(浙江大学 材料与化学工程学院,浙江 杭州 310027)
Process integrated model of an A356 automotive wheel to predict fatigue life
TONG Shui-guang, XU Li, LIU Yan, ZHANG Xiang
(Department of Chemical Mechanics Engineering, Zhejiang University, Hangzhou 310027, China)
 全文: PDF(1436 KB)   HTML
摘要:

为了提高轮毂疲劳寿命预测的准确性,建立了轮毂过程集成模型来模拟轮毂制造过程中的物理特性参数和微观结构参数,并以此为基础预测轮毂的疲劳寿命.过程集成模型综合考虑了轮毂制造过程对疲劳寿命的影响,把以前独立的制造过程(低压铸造、热处理、机加工和应力加载实验)进行集成,将微观组织与残余应力的影响加入到疲劳寿命模型中.轮毂疲劳实验表明,过程集成模型所预测的轮毂疲劳寿命和实验结果吻合很好,与局部应力应变法预测结果相比,过程集成模型结果的准确性更高.

Abstract:

Process models of the various stages of auto wheel manufacture were integrated to simulate the physical and microstructural transformations occurring throughout the entire manufacturing route in order to improve the accuracy of fatigue life prediction of the wheel. Then the fatigue life of an A356 automotive wheel was predicted. The process integrated model considered the influence of the wheel manufacture process for the fatigue life of the wheel. The model integrated the separate models, such as low pressure die casting, heat treatment, machining and test load, and incorporated the influence of the microstructure and residual stresses into the fatigue life prediction model. The fatigue life predicted from the model accorded well with the experimental results, and was more accurate than the results of the local stress-strain method.

出版日期: 2010-01-16
:  TG 24  
通讯作者: 童水光,男,教授.     E-mail: cetongsg@zju.edu.cn
作者简介: 徐立(1981-),男,湖南长沙人,博士生,从事计算机结构模拟和仿真研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

童水光, 徐立, 刘岩, 等. 过程集成模型铝合金轮毂疲劳寿命预测[J]. J4, 2009, 43(12): 2309-2313.

TONG Shui-Guang, XU Li, LIU Yan, et al. Process integrated model of an A356 automotive wheel to predict fatigue life. J4, 2009, 43(12): 2309-2313.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2009.12.032        http://www.zjujournals.com/eng/CN/Y2009/V43/I12/2309


[1] CATON M J, JONES J W, ALLISON J E. The influence of heat treatment and solidification time on the behavior of small-fatigue-cracks in a cast aluminum alloy
[J]. Materials Science and Engineering: A , 2001,314(1,2):81-85.

[2] MAIJER D M, GAO Y X, LEE P D, et al. A through-process model of an A356 brake caliper for fatigue life prediction
[J]. Metallurgical and Materials Transactions: A, 2004, 35(10):3275-3288.

[3] GAO Y X, YI J Z, LEE P D, et al. A micro-cell model of the effect of microstructure and defects on fatigue resistance in cast aluminum alloys
[J]. Acta Materialia, 2004, 52(9):5435-5449.

[4] YI J Z, GAO Y X, LEE P D, et al. Effect of Fe-content on fatigue crack initiation and propagation in a cast aluminum–silicon alloy (A356–T6)
[J]. Materials Science and Engineering: A, 2004, 386(1,2):396-407.

[5] ATWOOD R C, SRIDHAR S, ZHANG W,et al.Diffusion-controlled growth of hydrogen pores in aluminium-silicon castings: in situ observation and modelling
[J]. Acta Materialia, 2000,48(2):405-417.

[6] YI J Z, GAO Y X, LEE P D, et al. Scatter in fatigue life due to effects of porosity in cast A356-T6 aluminum-silicon alloys
[J]. Metallurgical and Materials Transactions: A ,2003,34(A):1879-1891.

[7] ZHANGA B, MAIJIR D M, COCKCROFT S L. Development of a 3-D thermal model of the low-pressure die-cast (LPDC) process of A356 aluminum alloy wheels
[J]. Materials Science and Engineering: A ,2007,464(1,2):295-305.

[8] RAVINDRAN K, BROWN S G R, SPITTLE J A. Prediction of the effective thermal conductivity of three-dimensional dendritic regions by the finite element method
[J]. Materials Science and Engineering: A, 1999, 269(1,2):90-97.

[9] NASTAC L. Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys
[J]. Acta Materialia,1999,:47(17):4253-4262.

[10] KURZ W, GIOVANOLA B, TRIVEDI R. Theory of microstructural development during rapid solidification
[J]. Acta Metallurgica, 1986, 34(5):823-830.

[11] BAMBERGER M, PRINZ B, Determination of heat transfer coefficients during water cooling of metals
[J]. Materials Science and Technology,1986,2(4): 410-415.

[12] WYATT J E, BERRY J T. A new technique for the determination of superficial residual stresses associated with machining and other manufacturing processes
[J]. Journal of Materials Processing Technology , 2006, 171(1):132-140.

[13] BAKER M, ROSLER J, SIEMERS C. A finite element model of high speedmetal cutting with adiabatic shearing
[J]. Computers and Structures , 2002, 80(5,6):495-513.

[14] GUO Y B, LIU C R. 3D FEA modeling of hard turning
[J]. Journal of Manufacturing Science and Engineering, 2002, 124:189-199.

[15] UMBRELLO D, HUA J, SHIVPURI R.. Hardness based flow stress for numerical modeling of hard machining AISI 52100 bearing steel
[J]. Materials Science and Engineering: A, 2004,374(1,2):90-100.

[16] FIRAT M, KOCABICAK U. Analytical durability modeling and evaluation-complementary techniques for physical testing of automotive components
[J]. Engineering Failure Analysis, 2004, 11(4): 655-674.

No related articles found!