Please wait a minute...
浙江大学学报(工学版)
土木工程     
钢板剪力墙单侧加劲肋的有效抗弯刚度
童根树,杨章,张磊
浙江大学 土木工程学系,浙江 杭州 310058
Effective rigidity of one side stiffeners in Steel Shear Walls
TONG Gen shu, YANG Zhang, ZHANG Lei
Department of Civil Engineering, Zhejiang University, Hangzhou, 310058, China
 全文: PDF(742 KB)   HTML
摘要:

针对单侧加劲钢板剪力墙中加劲肋的有效抗弯刚度问题,采用隔离体分析法,沿墙板和加劲肋连接线把两者分割成独立个体.墙板相当于承受面内和面外荷载的薄板,加劲肋相当于简支梁.墙板和加劲肋在连接处满足变形连续条件.对加劲板进行屈曲分析和受力弯曲分析,获得单侧加劲肋有效抗弯刚度和有效宽度的解析表达式.当加劲肋高跨比较大时剪切变形不可忽略,剪切变形大小和有效宽度相关.与有限元模拟结果进行分析比对表明,获得的有效抗弯刚度解析表达式具有良好精度,适用于开口和闭口截面单侧加劲肋. 

Abstract:

The effective bending stiffness of one sided stiffener in reinforced steel shear wall was analyzed. The stiffener and the plate were isolated and acted by their interactive forces along the connecting line. The plate was analyzed as loaded by in plane and out plane loads. The stiffener was analyzed as simply supported beam. The plate and the sitffener were combined to satisfy the continuity conditions in the longitudinal strains and the deflections on the connecting line, The effect of shear deformation in the stiffener was included. The buckling analysis and bending analysis of one side stiffened plates were taken.  Analytic expression of the effective bending stiffness and the effective breadth  was found. The effective breadth was indispensable while calculating the effect of shear deformation. The influence of shear deformation can't be ignored when the depth span ratio of the stiffener was large. Comparing with the results of ANSYS analysis, it is found that the analytic solution has excellent accuracy regardless of the shapes of the stiffener.

出版日期: 2015-11-01
:  TU 391  
基金资助:

浙江省重点科技创新团队资助项目(2010R50034)

作者简介: 童根树,男,教授,博导,主要从事钢结构稳定性研究.ORCID:0000 0001 5572 2068.E-mail:tonggs@ccea.zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

童根树,杨章,张磊. 钢板剪力墙单侧加劲肋的有效抗弯刚度[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008 973X.2015.11.016.

TONG Gen shu, YANG Zhang, ZHANG Lei. Effective rigidity of one side stiffeners in Steel Shear Walls. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008 973X.2015.11.016.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008 973X.2015.11.016        http://www.zjujournals.com/eng/CN/Y2015/V49/I11/2151

[1] 沈金,干钢,童根树. 钢板剪力墙设计与施工的工程实例[J].建筑结构,2013,43(15):19-22.
SHEN Jin, GAN Gang, TONG Gen shu. Practical application of design and construction of steel shear walls. [J].Building Structure, 2013, 43(15):19-22.
[2] 赵伟,杨强跃,童根树. 钢板剪力墙加劲肋刚度及弹性临界应力研究[J].工程力学,2010,27(6):15-23.
Zhao wei, Yang qiangyue, Tong genshu . Stiffener stiffness and elastic buckling stress of steel plate shear wall[J] .Engineer ing Mechanics,2010,27(6):15-23.
[3] 沈嘉嘉. 考虑加劲肋扭转效应的加劲板在轴压下的弹性屈曲研究[D].杭州:浙江大学, 2014.
SHEN Jia jia. Buckling of stiffened plate under uniform compression with stiffener torision include[D]. Hang zhou:Zhejiang University, 2014.
[4] 吴炜. 钢桥受压加劲板稳定与加劲肋设计方法研究[D].上海:同济大学,2006.
WU Wei, Stability of stiffened compression plates of steel bridge and stiffeners design method [D]. Shanghai:Tongji University, 2006.
[5] SCHADE H A. The effective breadth of stiffened plating under bend loads[J]. Journal of Marine Science and Technology, 1951 59:154-182.
[6] TIMOSHENKO S P, GOODIER J N. Theory of Elasticity[M].New York: McGraw Hill Book Company, 1951: 171-177.
[7] BULSON P S. The stability of flat plates [M]. London: Chatto&Windus Ltd. 1970: 220-221.
[8] Seide. Paul. The effect of longitudinal stiffeners located on one side of plate on the compressive buckling stress of the plate stiffener combination[R]. note 2873 Washing ton DC: NACA,1953.
[9] BEDAIR O K. A contribution to stability of stiffened plates under uniform compression[J]. Computers&Structures, 1998, 66(5):535-570.
[10]WANG X, RAMMERSTORFER F G. Determination of effective breadth and effective width of stiffened plates by finite stripe analyses[J]. Thin Walled Strictures, 1996, 26 (4): 261-286.
[11] KATSIKADELIS J T, SAPOUNTZAKIS E. A realistic estimation of the effective breadth of ribbed plates[J]. International Journal of Solids and Structures, 2002, 39(4):789-799.
[12] TIGAS I G, THEODOULIDES A. On the effective breadth of plating[M]. London:Taylor&Francis Group,2012.

[1] 杨章, 童根树, 张磊. 对称布置2根单侧加劲肋的有效刚度[J]. 浙江大学学报(工学版), 2016, 50(8): 1446-1455.
[2] 相阳, 罗永峰, 廖冰, 沈祖炎. 球面网壳地震动输入与振型响应的相关性[J]. 浙江大学学报(工学版), 2016, 50(6): 1040-1047.
[3] 欧阳丹丹, 付波, 童根树. 矩形钢管截面延性等级和板件宽厚比相关关系[J]. 浙江大学学报(工学版), 2016, 50(2): 271-281.
[4] 王佼姣, 石永久, 王元清, 潘鹏, 牧野俊雄, 齐雪. 低屈服点钢材LYP100循环加载试验[J]. 浙江大学学报(工学版), 2015, 49(8): 1401-1409.
[5] 杨连枝, 张亮亮, 余莲英, 尚兰歌, 高阳, 王敏中. 悬臂梁固定端不同位移边界条件下解的对比[J]. 浙江大学学报(工学版), 2014, 48(11): 1955-1961.
[6] 陆金钰,唐屹,舒赣平,王恒华. 不等高开缝钢板剪力墙滞回性能分析[J]. 浙江大学学报(工学版), 2014, 48(11): 1968-1975.
[7] 程华强,罗尧治,许贤. 自适应张弦梁结构的非线性内力控制[J]. 浙江大学学报(工学版), 2014, 48(7): 1155-1161.
[8] 张磊, 罗桂发, 童根树. 人字撑-钢框架弹塑性抗侧性能的精细化研究[J]. J4, 2013, 47(10): 1815-1823.
[9] 肖南, 王海, 陈华鹏, 张飞林. 大气腐蚀下网架结构症状可靠度及寿命预测[J]. J4, 2013, 47(8): 1373-1378.
[10] 王振宇,张劲帆,方成,刘国华,蒋建群. 半刚性节点初始刚度的组件式计算模型[J]. J4, 2012, 46(11): 1998-2006.
[11] 张磊,童根树. 薄壁构件整体稳定性的有限元模拟[J]. J4, 2011, 45(3): 531-538.
[12] 金阳, 童根树. 考虑翼缘约束的工字形截面腹板的弹性屈曲[J]. J4, 2009, 43(10): 1883-1891.