Please wait a minute...
浙江大学学报(工学版)
能源与机械工程     
环形轨自动化制孔系统孔位修正方法
毕运波1, 涂国娇1, 方伟2, 沈立恒2, 李汝鹏2
1. 浙江大学 机械工程学系,浙江 杭州 310027; 2. 浙江大学 土木工程学系,浙江 杭州 310027
Correcting method of hole position for flexible track automatic drilling system
BI Yun bo1, TU Guo jiao1, FANG Wei2, SHEN Li heng2, LI Ru peng2
1. Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China;2. Department of Civil Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1167 KB)   HTML
摘要:
为了满足大型飞机机身段壁板对接面区域的高质量制孔要求, 提出基于六轴联动环形轨自动化制孔系统的孔位修正方法. 该方法采用激光位移传感器以非接触测量的方式测量并求解得到基准孔的法矢, 结合视觉测量系统获取的基准孔孔位误差, 通过插值Coons曲面方法计算待加工孔的孔位误差向量, 并补偿至理论坐标, 实现孔位修正. 利用筒状飞机机身壁板模型对该方法进行验证. 结果表明, 与双线性插补方法相比,该方法综合考虑了壁板外形表面曲率变化因素, 孔位修正精度较高, 保证了机身段壁板对接区域制孔的几何精度要求.
Abstract:
A method of hole position correction for a flexible track automatic drilling system with six axes was proposed in order to meet the high drilling accuracy requirement of aerospace fuselage join assembly. The method was presented by measuring and computing the normal vector of the reference holes through four non contact laser displacement sensors. The error of reference holes can be obtained based on the vision measurement system. A position correction method using error data of reference holes was developed by interpolating the Coons surface. Then the position correction can be realized by adding error to the nominal coordinates of the holes. The method was tested on a cylinder model. Results indicate that the method accounting for the changing curvature of the panel shape has higher accuracy of hole position correction and can effectively meet the geometric accuracy requirement of aircraft panels compared with the double linear interpolating method.
出版日期: 2015-10-29
:  TH 12  
基金资助:

国家自然科学基金资助项目(51275463).

作者简介: 毕运波(1979—), 男, 副教授, 从事飞机数字化装配技术的研究. ORCID: 0000 0002 6270 3030. E-mail: zjubyb@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

毕运波, 涂国娇, 方伟, 沈立恒, 李汝鹏. 环形轨自动化制孔系统孔位修正方法[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008 973X.2015.10.006.

BI Yun bo, TU Guo jiao, FANG Wei, SHEN Li heng, LI Ru peng. Correcting method of hole position for flexible track automatic drilling system. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008 973X.2015.10.006.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008 973X.2015.10.006        http://www.zjujournals.com/eng/CN/Y2015/V49/I10/1863

[1] 许国康.自动钻铆技术及其在数字化装配中的应用[J].航空制造技术,2005(6): 4549.XU Guo kang. Automatic riveting technology and the apply in digital assembly [J]. Aeronautical Manufacturing Technology, 2005 (6): 45-49.
[2] ZHU W, QU W. An off line programming system for robotic drilling in aerospace manufacturing [J]. International Journal of Advanced Manufacturing Technology, 2013, 68(9 12): 2535-2545.
[3] 薛汉杰,张敬佩.蒙皮类部件钻孔法向的测量和调整[J].航空制造技术,2010(23): 60-62.
XUE Han jie, ZHANG Jing pei. Normal measurement and adjustment for skin drilling [J]. Aeronautical Manufacturing Technology, 2010(23): 60-62.
[4] 秦现生,汪文旦,楼阿莉,等.大型壁板数控制孔的三点快速调平算法[J].航空学报, 2007, 28(6): 1455-1460.
QIN Xian sheng, WANG Wen dan, LOU A li, et al. Three point bracket regulation algorithm for drilling and riveting of aerofoil [J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6): 1455-1460.
[5] 张来喜,王兴松.曲面柔性制孔机器人末端执行器及其法向姿态调整的一种新算法[J].东南大学学报: 英文版, 2012, 28(1): 29-34.
ZHANG Lai xi, WANG Xing song. A novel algorithm of normal attitude regulation for the designed end effector of a flexible drilling robot [J]. Journal of Southeast University: English Edition, 2012, 28(1): 29-34.
[6] 邹冀华,周万勇,韩先国.飞机装配中基于3 RPS的并联机构法向调整算法[J].中国机械工程, 2011, 22(5): 557-560.
ZOU Ji hua, ZHOU Wan yong, HAN Xian guo. Normal adjusting algorithm of a 3 RPS parallel mechanism in airplane assembly [J]. China Mechanical Engineering, 2011, 22(5): 557-560.
[7] BI Yun bo, JIANG Yi hang, LI Yong chao, et al. A new flexible track automatic drilling system [J]. Mechanics and Materials, 2013, 433435: 2178-2183.
[8] 江一行.环形轨自动化制孔系统开发及其运动学方程解析[D].杭州:浙江大学, 2014.JIANG Yi hang. Development and kinematics equation analysis of flexible track automatic drilling system [D]. Hangzhou: Zhejiang University, 2014.
[9] 毕运波,李永超,顾金伟,等.机器人自动化制孔系统[J].浙江大学学报:工学版,2014, 48(8): 1427-1433.
BI Yun bo, LI Yong chao, GU Jin wei, et al. Robotic automatic drilling system [J]. Journal of Zhejiang University: Engineering Science, 2014, 48(8): 1427-1433.
[10] TIAN Wei, ZHOU Wei xue, ZHOU Wei, et al. Auto normalization algorithm for robotic precision drilling system in aircraft component assembly [J]. Chinese Journal of Aeronautics, 2013, 26(2): 495-500.
[11] FAUX I D, PRAT M J. Computational geometry for design and manufacture [M]. Chichester: Ellis Horwood Ltd, 1979.
[12] FERGUSON J C. Multivariable curve interpolation, report No. D2 22504 [R]. Seattle: The Boeing Company, 1963.
[13] FERGUSON J C. Multivariable curve interpolation [J]. Journal of the ACM, 1964, 11(2): 221-228.
[14] BOYD S, VANDENBERGHE L. Convex optimization [M]. England: Cambridge University Press, 1906.
[15] 朱心雄.自由曲线曲面造型技术[M].北京:科学出版社,2000.

[1] 李特, 芮执元, 雷春丽, 郭俊锋, 胡赤兵. 考虑气隙变化的高速电主轴热特性仿真[J]. 浙江大学学报(工学版), 2016, 50(5): 941-948.
[2] 冀瑜,邱清盈,冯培恩,黄浩. 国际专利分类表中设计知识的提取和利用[J]. 浙江大学学报(工学版), 2016, 50(3): 412-418.
[3] 吕茂印, 徐月同, 叶国云, 姚鑫骅. 基于量子行为粒子群的非对称转向机构优化[J]. 浙江大学学报(工学版), 2016, 50(2): 218-223.
[4] 陈实, 杨智渊, 孙凌云, 楼赟. 草图设计知识分析方法——结合语音能量和创意拐点[J]. 浙江大学学报(工学版), 2015, 49(11): 2073-2082.
[5] 吴晨睿, 张树有, 刘晓健. 基于群聚参数网络分析的产品方案设计评价[J]. 浙江大学学报(工学版), 2015, 49(8): 1495-1502.
[6] 冯燕, 俞小莉, 刘震涛. 基于热弹塑性理论的法向接触刚度分形模型[J]. 浙江大学学报(工学版), 2015, 49(8): 1553-1558.
[7] 曹衍龙,赵奎,杨将新,郑金忠. 质量屋技术特性自冲突识别与消除方法[J]. 浙江大学学报(工学版), 2014, 48(11): 1994-2001.
[8] 陈进,庆飞,庞晓平. 基于组合挖掘的反铲液压挖掘机工作装置优化设计[J]. 浙江大学学报(工学版), 2014, 48(9): 1654-1660.
[9] 盖宇春, 朱伟东, 柯映林. 三坐标定位器部件刚度配置方法[J]. 浙江大学学报(工学版), 2014, 48(8): 1434-1441.
[10] 刘会静, 洪军, 杨国庆, 朱林波. 微凸体切向滑移特性[J]. 浙江大学学报(工学版), 2014, 48(6): 1114-1119.
[11] 曹衍龙,赵奎,杨将新,郑金忠. 质量屋技术特性自冲突识别与消除方法[J]. 浙江大学学报(工学版), 2014, 48(6): 1-.
[12] 刘征, 顾新建, 潘凯, 杨青海. 基于TRIZ的产品生态设计方法研究——融合规则和案例推理[J]. J4, 2014, 48(3): 436-444.
[13] 杨巍,张秀峰,杨灿军,吴海杰. 基于人机5杆模型的下肢外骨骼系统设计[J]. J4, 2014, 48(3): 430-435.
[14] 程吉祥,顾新建,代风,刘征. 基于BioTRIZ的产品创新设计过[J]. J4, 2014, 48(1): 35-41.
[15] 盖宇春, 朱伟东, 柯映林. 大型飞机总装配中支撑点设计分析技术[J]. J4, 2013, 47(12): 2176-2183.