Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2019, Vol. 34 Issue (2): 190-    DOI:
    
Cauchy integral formulas for two kinds of functions in Clifford analysis and the related problems
CHEN Xue, ZHANG Ting-ting, XIE Yong-hong
1. College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024,China;
2. Shijiazhuang University of Applied Technology, Department of Economics and Trade, Shijiazhuang 050081, China
Download:   PDF(255KB)
Export: BibTeX | EndNote (RIS)      

Abstract  This paper mainly studies Cauchy integral formulas for two kinds of functions and
the related problems. Firstly, the Cauchy integral formula for right hypergenic functions in Clifford
analysis is given. Then, the properties of the right hypergenic quasi-Cauchy type integral are studied.
Finally, the Cauchy integral formula for bihypergenic functions in Clifford analysis is given.


Key wordsClifford analysis      right hypergenic function      bihypergenic function      Cauchy integral formula
     
Published: 05 July 2019
CLC:  O174  
Cite this article:

CHEN Xue, ZHANG Ting-ting, XIE Yong-hong. Cauchy integral formulas for two kinds of functions in Clifford analysis and the related problems. Applied Mathematics A Journal of Chinese Universities, 2019, 34(2): 190-.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2019/V34/I2/190


Clifford分析中两类函数的Cauchy 积分公式及其相关问题

主要研究了两类函数的Cauchy积分公式及其相关问题. 首先给出了Clifford分
析中右hypergenic函数的Cauchy积分公式, 其次研究了右hypergenic函数拟Cauchy型
积分的性质, 最后给出了Clifford分析中双hypergenic函数的Cauchy积分公式.

关键词: Clifford分析,  右hypergenic函数,  双hypergenic函数,  Cauchy积分公式 
[1] LI Chong, ZHANG Gui-ling, XIE Yong-hong. Boundary value problems for hypergenic functions[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(2): 176-188.
[2] YANG He-ju , LI Zun-feng , GUO Bing-chan. $L^p$ intergrability of a higher order Teodorescu operator in Clifford analysis[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(2): 189-197.