Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2019, Vol. 34 Issue (2): 173-    DOI:
    
Analysis of local bifurcations of an enzyme catalyzed reaction system
SU Juan
School of Math., Chengdu Normal Univ., Chengdu 611130, China
Download:   PDF(320KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In this paper, the local bifurcations of an enzyme catalysed system is studied. Firstly, it
shows that this system has either 1 or 2 isolated equilibria, or a singular line. The dynamical properties
of each equilibria are given. Then, when the isolated equilibria are non-hyperbolic, it exhibits that this
system may undergo transcritical bifurcation and Hopf bifurcation. By Lyapunov quantity, the order
of weak focus is proved to be 1. Finally, numerical simulations are employed to illustrate the results obtained.


Key wordsenzyme catalyzed reaction system      trancritical bifurcation      Hopf bifurcation      Lyapunov quantity      resultant elimination     
Published: 05 July 2019
CLC:  O175.1  
Cite this article:

SU Juan. Analysis of local bifurcations of an enzyme catalyzed reaction system. Applied Mathematics A Journal of Chinese Universities, 2019, 34(2): 173-.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2019/V34/I2/173


一个酶催化反应系统的局部分岔分析

讨论一个酶催化反应系统的局部分岔. 首先得到该系统只有1个或2个孤立平
衡点, 或者一条奇线, 并给出了所有平衡点的定性性质. 进一步分析了孤立平衡点在非
双曲情形下发生的分岔, 包括跨临界分岔和Hopf分岔. 通过计算Lyapunov量得出该系
统中细焦点阶数为1. 最后利用数值模拟验证了所得结论.

关键词: 酶催化反应系统,  跨临界分岔,  Hopf分岔,  Lyapunov量,  结式消元 
[1] TIAN Xiao-hong, XU Rui, WANG Zhi-li. Global exponential stability and Hopf bifurcation of inertial Cohen-Grossberg neural networks with time delays in leakage terms[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(4): 428-440.