Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2019, Vol. 34 Issue (2): 165-    DOI:
    
The solution of soliton to generalized higher dimensions Klein-Gordon forced disturbed equation
HAN Xiang-lin, WANG Wei-gang, MO Jia-qi
1. Qiuzhen School, Huzhou Teachers College, Huzhou 313000, China;
2. Department of Basic, Hefei Preschool Education College, Hefei 230011, China;
3. School of Mathematics & Statistics Science,Anhui Normal University, Wuhu 241003, China
Download:   PDF(241KB)
Export: BibTeX | EndNote (RIS)      

Abstract  A class of nonlinear generalized forced disturbed Klein-Gordon equation is considered by
using the homotopic mapping method. Firstly, an approximate solution of soliton to typical
nonlinear equation is solved using the method of undetermined coe±cients for the hyperbolic tangent
functions. Then, the approximate solution of soliton to nonlinear forced disturbed equation is obtained
using the homotopic mapping principle. Finally, it is point out that the approximate solution of soliton
is an analytic expression, so we can carry on analytic operation to it. But these can not obtain for the
simple simulate method.


Key wordssoliton      nonlinear      Klein-Gordon equation     
Published: 05 July 2019
CLC:  O175.29  
Cite this article:

HAN Xiang-lin, WANG Wei-gang, MO Jia-qi. The solution of soliton to generalized higher dimensions Klein-Gordon forced disturbed equation. Applied Mathematics A Journal of Chinese Universities, 2019, 34(2): 165-.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2019/V34/I2/165


广义高维Klein-Gordon强迫扰动方程的孤子解

利用同伦映射方法研究了一类非线性广义强迫扰动Klein-Gordon方程. 首先
利用双曲正切待定系数法求得了无扰动项典型方程的孤子解. 然后利用同伦映射原理
得到了强迫扰动Klein-Gordon方程的任意次近似孤子解. 最后叙述了得到的近似孤子
解是一个解析展开式, 还能对它进行解析运算. 这对使用简单的模拟方法得到的近似
解是达不到的.

关键词: 孤子,  非线性,  Klein-Gordon方程 
[1] ZHU Yan-bei, ZONG Rui-xue, QIAO Xu-dong, ZHAO Zhang-rui, YANG Wen-zhi. The convergence of LS estimator for nonlinear regression models based on m-WOD errors[J]. Applied Mathematics A Journal of Chinese Universities, 2018, 33(2): 191-201.
[2] LIN Cheng-long, LIANG Zong-qi, DU Rui-lian. New multi-stage envelope periodic solutions for a class of nonlinear Schrodinger equation with wave operator[J]. Applied Mathematics A Journal of Chinese Universities, 2018, 33(2): 211-222.
[3] LIU Jiang, ZHANG Long, JIANG Zhong-chuan, LI Yan-qing. Synchronous control on inverter system of grid connected high-power wind generators with nonlinear and pulse disturbance#br#[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 388-402.
[4] XU Xing-ye. Suffcient and necessary condition for the existence of positive entire solutions of a class of singular nonlinear polyharmonic equations#br#[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 403-412.
[5] CHEN Li-chun, ZHUANG Rong-kun. Zero point comparison theorems of solutions for second order nonlinear differential equations[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(2): 149-155.
[6] WEI Han-yu, XIA Tie-cheng. Nonlinear bi-integrable couplings of Broer-Kaup-Kupershmidt hierarchy with self-consistent sources[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(2): 165-175.
[7] LI Chong, ZHANG Gui-ling, XIE Yong-hong. Boundary value problems for hypergenic functions[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(2): 176-188.
[8] SUN Yu-dong, SHI Yi-min, TONG Hong. The pricing of step options under the nonlinear Black-Scholes model[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 262-272.
[9] WEI Yue-song. Generalized likelihood ratio approach for identifying nonlinear structural vector autoregressive causal graphs[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 143-152.
[10] OUYANG Cheng, WANG Wei-gang, SHI Lang-fang, MO Jia-qi. A class of functional asymptotic method for the generalized nonlinear disturbed Schrodinger equation[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 176-184.
[11] DONG Yan. The pricing of Bala options under the nonlinear Black-Scholes model[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 9-20.
[12] LI Zhi-guang, KANG Shu-gui. The pricing of geometric average Asian options under the nonlinear Black-Scholes model[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 39-49.
[13] SUN Yu-dong, WANG Xiu-fen. The nonlinear variational inequality problem arising from American barrier option[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(1): 43-54.
[14] WANG Zi-qiang, CAO Jun-ying. A high order schema for the numerical solution of the nonlinear two-dimensional Volterra integral equations[J]. Applied Mathematics A Journal of Chinese Universities, 2014, 29(4): 397-411.