Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2018, Vol. 33 Issue (2): 223-331    DOI:
    
Infinitely many periodic solutions for a class of Kirchhoff-type p(t)-Laplacian systems
ZHANG Shen-gui
School of Math. and Compu. Sci., Northwest Minzu University, Lanzhou 730030, China
Download:   PDF(240KB)
Export: BibTeX | EndNote (RIS)      

Abstract  By using the theory of variable exponent Sobolev spaces and the critical point theory,
periodic solutions for Kirchhoff-type p(t)-Laplacian systems are investigated. When the nonlinearity is
sublinear near zero or the nonlinearity is superlinear at infinity, the existence of infinitely many periodic
solutions for this system is obtained.


Key wordsKirchhoff-type Problem      p(t)-Laplacian system      periodic solution      critical point     
Published: 26 July 2018
CLC:  O175.14  
Cite this article:

ZHANG Shen-gui. Infinitely many periodic solutions for a class of Kirchhoff-type p(t)-Laplacian systems. Applied Mathematics A Journal of Chinese Universities, 2018, 33(2): 223-331.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2018/V33/I2/223


一类Kirchhoff型p(t)-Laplace系统的无穷多周期解

利用变指数Sobolev空间理论和临界点理论, 研究Kirchhoff型p(t)-Laplace系统
的周期解. 当非线性项在零点附近次线性或在无穷远处超线性增长时, 得到了此类系
统无穷多个周期解的存在性.

关键词: Kirchhoff型问题,  p(t)-Laplace系统,  周期解,  临界点 
[1] LIN Cheng-long, LIANG Zong-qi, DU Rui-lian. New multi-stage envelope periodic solutions for a class of nonlinear Schrodinger equation with wave operator[J]. Applied Mathematics A Journal of Chinese Universities, 2018, 33(2): 211-222.
[2] LUO Hua. Existence and uniqueness of solutions for a nonlinear V-time scales boundary value problem of dynamic system[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 1-12.
[3] ZHANG Shen-gui, LIU Hua. Multiplicity of solutions for Kirchhoff type equation involving the $p$-Laplacian-like operator[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 153-160.
[4] JIA Gao, CHEN Jie, GUO Lu-qian. Multiplicity of solutions for quasilinear elliptic equations in $\mathbf{R}^{N}$[J]. Applied Mathematics A Journal of Chinese Universities, 2014, 29(4): 453-461.