Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2018, Vol. 33 Issue (2): 179-190    DOI:
    
A new kind of location invariant extreme value index estimator
LIU Wei-qi$^{1;3}$, LIANG Shan-shan$^2$
1. Research Center for Management and Decision Making, Shanxi University, Taiyuan 030006,China;
2. School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China;
3. Faculty of Finance and Banking, Shanxi University of Finance and Economics, Taiyuan 030006,China
Download:   PDF(306KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Heavy-tailed distribution can well explain the economic, natural and social phenomena such as asset prices, income
 distribution, hydro-geology, social media, etc.
 Accurate estimation of extreme value index is a key technique for application of heavy-tailed
 distribution. The Hill estimator, introduced in 1975, which opened a precedent of estimating extreme value index, is still
 the focus of heavy-tailed modeling up to now. In order to overcome the shortcomings of the location variation and
 asymptotic behavior of the existing estimators, borrowing the asymptotic expansion of statistic $M_{n}^{(\alpha)}(k_{0},k)$,
  this paper proposes a new kind of location invariant extreme value index estimator (NLIE) and studies its asymptotic expansion under second order regular variation. The optimal choice of threshold is discussed as well. The NLIE is compared with the classical location invariant estimator $\hat{\gamma}_{n}^{H}(k_{0},k)$ by Monte-Carlo. The results show that NlIE behaves better than $\hat{\gamma}_{n}^{H}(k_{0},k)$.



Key wordsheavy-tailed distribution             extreme value index             location invariant             regular variation             asymptotic property     
Published: 26 July 2018
CLC:  O213  
Cite this article:

LIU Wei-qi, LIANG Shan-shan. A new kind of location invariant extreme value index estimator. Applied Mathematics A Journal of Chinese Universities, 2018, 33(2): 179-190.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2018/V33/I2/179


一类新的位置不变极值指数估计

重尾分布可以很好地解释资产价格, 收入分配, 水文地质, 社交媒体等经济,
自然与社会现象, 准确估计极值指数成为重尾分布应用的关键技术,
1975年Hill估计的提出开辟了极值指数估计的先河,
直到今天极值指数的估计仍是重尾建模的重点.
为克服已有估计中存在的位置变化和渐近性的不足,
借用统计量$M_{n}^{(\alpha)}(k_{0},k)$的渐近展式提出了一类新的位置不变极值指数估计(NLIE),
在二阶正则变化条件下研究了其渐近展式以及阈值的最优选取,
通过Monte-Carlo对NLIE与Fraga
Alves所提的经典位置不变估计量$\hat{\gamma}_{n}^{H}(k_{0},k)$进行了模拟比较.
结果表明, NLIE的效果更好.

关键词: 重尾分布,  极值指数,  位置不变,  正则变化,  渐近性质 
[1] ZHAO Yuan-ying, XU Deng-ke, PANG Yi-cheng. Bayesian analysis for joint mean and variance models[J]. Applied Mathematics A Journal of Chinese Universities, 2018, 33(2): 157-166.
[2] LIN Cheng-long, LIANG Zong-qi, DU Rui-lian. New multi-stage envelope periodic solutions for a class of nonlinear Schrodinger equation with wave operator[J]. Applied Mathematics A Journal of Chinese Universities, 2018, 33(2): 211-222.
[3] . A kind of deep learning acceleration method for pulmonary nodule detection[J]. Applied Mathematics A Journal of Chinese Universities, 2018, 33(2): 127-139.
[4] . GMM estimation of nonparametric spatial lag model[J]. Applied Mathematics A Journal of Chinese Universities, 2018, 33(2): 140-156.
[5] LIU Jiang, ZHANG Long, JIANG Zhong-chuan, LI Yan-qing. Synchronous control on inverter system of grid connected high-power wind generators with nonlinear and pulse disturbance#br#[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 388-402.
[6] BAI Yong-xin, TIAN Mao-zai. Confidence interval construction for the risk difference of chronic disease based on saddle-point approximation under poisson distribution[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(3): 253-266.
[7] CHEN Xiao-li, HU Qiao-zhen. Endpoint estimates for commutators of intrinsic square functions on the weighted weak Hardy spaces[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 109-119.
[8] KONG Xiang-shan, LI Hai-tao, ZHAO Hong-xin, LV Xun-jing. Bifurcation of positive solutions for a class of integral boundary value problems of fractional differential equations[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 13-22.
[9] WU Xiu-feng, HUANG Jun-jie, Alatancang. Pertubation of four classes of point spectra for $3\times3$ upper triangular operator matrices[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 93-102.
[10] WANG Chun-fa, CHEN Rong-da. Option pricing in Markov regime switching Levy models using Fourier-Cosine expansions[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(4): 390-404.