Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2017, Vol. 32 Issue (4): 431-436    DOI:
    
Complex oscillation of solutions of some second order non-homogeneous linear di?erential equations#br#
YUAN Rong, LIU Hui-fang
College of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330022, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In this paper, the growth and the distribution of zeros of solutions to some second order non-homogeneous differential equations $f''+A\text{e}^{az^n}f'+(B_1\text{e}^{bz^n}+B_0\text{e}^{dz^n})f=F(z)$ are investigated, where $F$ is a nonzero entire function with order less than $n$, $A, B_1, B_0$ are nonzero polynomials. Under an appropriate assumption on complex numbers $a, b, d$, the precise estimations on the hyper order and the hyper convergence exponent of zeros of solutions of such equation are obtained.

Key wordsdifferential equation      entire function      hyper order      zero     
Received: 03 March 2017      Published: 01 December 2018
CLC:  O175.14  
Cite this article:

YUAN Rong, LIU Hui-fang. Complex oscillation of solutions of some second order non-homogeneous linear di?erential equations#br#. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 431-436.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2017/V32/I4/431


一类二阶非齐次线性微分方程解的复振荡

研究了一类二阶非齐次线性微分方程$f''+A\mathrm{e}^{az^n}f'+(B_1\mathrm{e}^{bz^n}+B_0\mathrm{e}^{dz^n})f=F(z)$ 解的增长性和零点分布, 其中$F$为级小于$n$的非零整函数,  $A, B_1, B_0$ 为非零多项 式. 在复数$a, b, d$满足一定条件下, 得到该方程的每一个解的超级和二级零点收敛指数的精确估计.

关键词: 微分方程,  整函数,  超级,  零点 
[1] ZHANG Hou-chao, SHI Dong-yang. High accuracy analysis of a new low order nonconforming mixed finite element method for the EFK equation[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 437-454.
[2] CHEN Li-chun, ZHUANG Rong-kun. Zero point comparison theorems of solutions for second order nonlinear differential equations[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(2): 149-155.
[3] KONG Xiang-shan, LI Hai-tao, ZHAO Hong-xin, LV Xun-jing. Bifurcation of positive solutions for a class of integral boundary value problems of fractional differential equations[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 13-22.
[4] BAO Li-ping. The asymptotic solution of a class of singular perturbed semi-linear delayed parabolic partial differential equation[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 307-315.
[5] LU Liang, GUO Xiu-feng. Existence of solutions for a nonlocal boundary value problem of fractional differential equations with $p$-Laplacian operator[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(3): 262-270.
[6] LI Yao-hong. Positive solution for boundary value problem of a class of fractional differential system[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(1): 109-116.
[7] CHEN Wen, YAO Jing-sun, SUN Guo-zheng. A nonlinear mixed boundary value problem for singularly perturbed differential equation[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(1): 117-126.
[8] SONG Li-mei. Positive solutions for boundary value problem of fractional differential equation with $p$-Laplacian operator[J]. Applied Mathematics A Journal of Chinese Universities, 2014, 29(4): 443-452.