Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2017, Vol. 32 Issue (3): 361-370    DOI:
    
A set of new determinate conditions for generalized $H$-matrices
CUI Jing-jing, PENG Guo-hua, LU Quan, XU Zhong
Dept. Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710072, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  By using $k$-partition of matrices index set and the spectral radius for its sub-matrices, some new determinant conditions for generalized $H$-matrices under positive definite matrix conditions were presented. When a block matrix reduces a point matrix, these conditions then become the sufficient conditions for nonsingular $H$-matrices, and improve some recent related results. Numerical examples are given to show the effectiveness of the corresponding results.

Key wordsgeneralized $H$-matrices      Hermite positive definite matrix      spectral radius     
Received: 25 January 2015      Published: 07 April 2018
CLC:  O151.21  
Cite this article:

CUI Jing-jing, PENG Guo-hua, LU Quan, XU Zhong. A set of new determinate conditions for generalized $H$-matrices. Applied Mathematics A Journal of Chinese Universities, 2017, 32(3): 361-370.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2017/V32/I3/361


广义$H$-矩阵的一组新判定条件

利用矩阵指标集的$k$-级划分和子矩阵的谱半径, 给出了正定条件下广义$H$-矩阵的一组判定条件, 当块矩阵退化为点矩阵时, 这些条件即为非奇异$H$-矩阵的充分条件. 这些结果改进了近期的相关结果, 并用数值算例说明本文判定条件的有效性.

关键词: 广义$H$-矩阵,  Hermite正定矩阵,  谱半径 
No related articles found!