Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2017, Vol. 32 Issue (3): 332-342    DOI:
    
The distributed $L_{1/2}$ regularization
WANG Pu-yu1, ZHANG Hai1,2, ZENG Jin-shan3
1. School of Mathematics, Northwest University, Xi’an 710069, China
2. Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100190, China
3. College of Computer Information Engineering, Jiangxi Normal University, Nanchang 330022, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  This paper focuses on the feature extraction and variable selection of massive data which is divided and stored in different linked computers, and studies the distributed $L_{1/2}$ regularization. Based on Alternating Direction Method of Multipliers algorithm(ADMM), distributed $L_{1/2}$ regularization algorithm which communicates information between the neighborhood computers has been proposed and the convergence of the algorithm has been proved. The variable selection results of the approach are the same with the entire data set by using $L_{1/2}$ regularization. Numerical studies show that this method is both effective and practical which performs well in distributed data analysis.

Key wordsdistributed      sparse      $L_{1/2}$ regularization      ADMM algorithm     
Received: 18 September 2016      Published: 07 April 2018
CLC:  O236  
  O213  
Cite this article:

WANG Pu-yu, ZHANG Hai, ZENG Jin-shan. The distributed $L_{1/2}$ regularization. Applied Mathematics A Journal of Chinese Universities, 2017, 32(3): 332-342.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2017/V32/I3/332


分布式$L_{1/2}$正则化

研究数据集被分割并存储于不同处理器时的特征提取和变量选择问题, 其中处理器通过某种网络结构相互连接. 提出分布式$L_{1/2}$正则化方法, 基于ADMM 算法给出分布式$L_{1/2}$正则化算法, 证明了算法的收敛性. 算法通过相邻处理器之间完成信息交互, 其变量选择结果与数据集不分割时利用$L_{1/2}$正则化相同. 实验表明, 所提出的新算法有效、实用, 适合于分布式存储数据处理.

关键词: 分布式,  稀疏,  $L_{1/2}$正则化,  ADMM算法 
No related articles found!