Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2017, Vol. 32 Issue (3): 321-331    DOI:
    
The categorical properties of $L$-fuzzy ideals of semirings
ZHOU Min
Department of Mathematics, Hubei University for Nationalities, Enshi 445000, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  The concept of $L$-fuzzy ideals of semirings is first introduced in this paper. Based on this new concept, some properties of the category of $L$-fuzzy ideal of semirings are investigated, the result that the category of $L$-fuzzy ideals of semirings is a topological construct on the category of semirings is also proved. Meanwhile, the equalizer, pullback and product are all discussed. On the other hand, the notion of inverse systems of category of $L$-fuzzy ideals of semirings is proposed and the inverse limit of the category of $L$-fuzzy ideals of semirings is constructed. Particularly, the limit mapping has been obtained by means of presenting the mapping between two inverse systems.

Key wordshemiring      $L$-fuzzy ideal      $L$-fuzzy ideal homomorphism      category     
Received: 04 January 2017      Published: 07 April 2018
CLC:  O159  
Cite this article:

ZHOU Min. The categorical properties of $L$-fuzzy ideals of semirings. Applied Mathematics A Journal of Chinese Universities, 2017, 32(3): 321-331.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2017/V32/I3/321


半环的$L$-模糊理想的范畴性质

首先给出了半环的$L$-模糊理想同态的定义, 在此基础上较系统地讨论了半环的$L$-模糊理想范畴的性质, 证明了此范畴是半环范畴上的一个拓扑结构, 并探讨了其中的等子、拉回和乘积等性质. 另一方面, 给出了半环的$L$-模糊理想范畴的逆系统的定义, 建立了半环的$L$-模糊理想范畴中逆系统的逆极限结构. 特别是在引入两个逆系统之间映射的基础上, 得到了两个逆系统的逆极限之间的极限映射.

关键词: 半环,  $L$-模糊理想,  $L$-模糊理想同态,  范畴 
No related articles found!