Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2017, Vol. 32 Issue (3): 283-294    DOI:
    
Asymptotic estimates for the bidimensional time-dependent risk model with investments and by-claims
LI Hui-jie, NI Jia-lin, FU Ke-ang
School of Stat. and Math., Zhejiang Gongshang Univ., Hangzhou 310018, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Consider a bidimensional risk model, in which two insurance companies divide between them the claims in some specified proportions, and every main claim induces a delayed by-claim. Suppose that the surpluses of the two companies are invested into portfolios whose returns follow a geometric Levy process. When the claim-size distribution is consistently-varying tailed, and the inter-arrival time and claim-size follow some dependence structure, asymptotic estimates for the ruin probabilities of this bidimensional risk model are derived.

Key wordsBidimensional risk model      investment return      by-claim      consistent variation      ruin probability     
Received: 17 January 2016      Published: 07 April 2018
CLC:  O211.4  
Cite this article:

LI Hui-jie, NI Jia-lin, FU Ke-ang. Asymptotic estimates for the bidimensional time-dependent risk model with investments and by-claims. Applied Mathematics A Journal of Chinese Universities, 2017, 32(3): 283-294.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2017/V32/I3/283


一类带投资和副索赔的二维时依风险模型破产概率的渐近估计

考虑一类二维风险模型, 其中两个保险公司共同承担所有的索赔, 且每个(主)索赔都会引起一个副索赔. 假定两个保险公司均将其资产投资到金融市场中,其投资回报服从几何Levy过程. 在索赔分布属于$mathcal{C}$族以及索赔额与索赔到达时间间隔具有某种相依结构的条件下, 对该二维风险模型盈余过程的有限时破产概率进行渐近估计.

关键词: 二维风险模型,  投资回报,  副索赔,  一致变尾,  破产概率 
[1] GUO Ming-le, ZHU Fu-xiu. Complete $q$th moment convergence of weighted sums for arrays of rowwise NSD random variables[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 55-65.
[2] TANG Xu-fei, XI Meng-mei, CHEN Wei-yang, WU Yi, WANG Xue-jun. Complete moment convergence for arrays of rowwise NA random variables[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 66-78.
[3] CAI Guang-hui, XU Jun, YING Xue-hai. The Berry-Esseen bound for equilibrium distribution by Stein method[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(3): 277-282.