Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2017, Vol. 32 Issue (3): 277-282    DOI:
    
The Berry-Esseen bound for equilibrium distribution by Stein method
CAI Guang-hui, XU Jun, YING Xue-hai
College of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In this paper, inspired by the paper of Shao and Su (2006), the Berry-Esseen bound for equilibrium distribution is obtained by Stein method.

Key wordsBerry-Esseen bound      Stein method      Equilibrium distribution     
Received: 07 December 2016      Published: 07 April 2018
CLC:  O211.4  
Cite this article:

CAI Guang-hui, XU Jun, YING Xue-hai. The Berry-Esseen bound for equilibrium distribution by Stein method. Applied Mathematics A Journal of Chinese Universities, 2017, 32(3): 277-282.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2017/V32/I3/277


基于Stein方法的均衡分布的Berry-Esseen界

受Shao和Su(2006)的启发, 获得了均衡分布的Berry-Esseen界, 定理的证明基于Stein方法.

关键词: Berry-Esseen界,  Stein方法,  均衡分布 
[1] TANG Xu-fei, XI Meng-mei, CHEN Wei-yang, WU Yi, WANG Xue-jun. Complete moment convergence for arrays of rowwise NA random variables[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 66-78.
[2] GUO Ming-le, ZHU Fu-xiu. Complete $q$th moment convergence of weighted sums for arrays of rowwise NSD random variables[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 55-65.
[3] LI Hui-jie, NI Jia-lin, FU Ke-ang. Asymptotic estimates for the bidimensional time-dependent risk model with investments and by-claims[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(3): 283-294.