Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2017, Vol. 32 Issue (2): 217-228    DOI:
    
Some applications on rearrangement
HUANG Qiang, WANG Zheng
Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
Download:
Export: BibTeX | EndNote (RIS)      

Abstract  With the help of rearrangement, this paper finds one class of functions in $H^p(\mathbf{R}^n)(0<p\leq 1)$ whose $H^p$-norms and $L^p$-norms are equivalent. More precisely, for each $f\in L^p(\mathbf{R}^n)$, there exists a function $g\in H^p(\mathbf{R}^n)$ satisfying $d_f=d_g$ and $\Vert g\Vert_{L^p}\leq\Vert g\Vert_{H^p}\leq C_p\Vert g\Vert_{L^p}$. Moreover, this paper also introduces a method to construct an $L^\infty$-atom of $H^p(\mathbf{R}^n)$.

Key wordsrearrangement      Hardy space      $L^\infty$-atom     
Received: 20 August 2016      Published: 01 June 2017
Cite this article:

HUANG Qiang, WANG Zheng. Some applications on rearrangement. Applied Mathematics A Journal of Chinese Universities, 2017, 32(2): 217-228.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2017/V32/I2/217


重排函数的一些应用

利用重排的方法找到了$H^p$空间的一类函数, 这类函数的$H^p$范数和$L^p$范数是等价的$(0<p\leq 1)$. 对于每一个$f\in L^p(\mathbb{R}^n)$,存在一个函数$g\in H^p(\mathbb{R}^n)$满足其分布函数相等$d_f=d_g$,并且$\Vert g\Vert_{L^p}\leq\Vert g\Vert_{H^p}\leq C_p\Vert g\Vert_{L^p}$. 另外, 还介绍了一种构造$H^p$空间的$L^\infty$-原子的方法.

关键词: 重排 Hardy空间,  $L^\infty$-原子 
No related articles found!