Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2017, Vol. 32 Issue (2): 189-197    DOI:
    
$L^p$ intergrability of a higher order Teodorescu operator in Clifford analysis
YANG He-ju1 , LI Zun-feng1 , GUO Bing-chan2
1. College of Science, Hebei university of Science and Technology, Shijiazhuang 050018, China
2. College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, China
Download:
Export: BibTeX | EndNote (RIS)      

Abstract  Firstly, the $A_n(R)$-valued higher order Teodorescu operator $T$ in $\mathbf{R}^n$ is defined and its properties in $L^\gamma$ space are discussed. Secondly, its norm is estimated and a modified higher order Teodorescu operator $T^*$ is introduced. And then, that the operator $T^*$ has a unique fixed point by the Banach’s contract mapping principle is proved. Finally, that the Mann iterative sequence strongly converges to the fixed point of $T^*$ is proved and an iterative sequence of the solution of a singular integral equation is given.

Key wordsClifford analysis      Teodorescu operator      fixed point theorem      Mann iterative sequence     
Received: 28 October 2016      Published: 01 June 2017
Cite this article:

YANG He-ju , LI Zun-feng , GUO Bing-chan. $L^p$ intergrability of a higher order Teodorescu operator in Clifford analysis. Applied Mathematics A Journal of Chinese Universities, 2017, 32(2): 189-197.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2017/V32/I2/189


Clifford分析中高阶$T$算子的$L^p$可积性

首先定义了定义于$\mathbf{R}^n$取值于$A_n(R)$的高阶$T$算子并讨论了它在$L^\gamma$空间中的性质. 其次, 估计了$T$算子的模, 并引入了修正的高阶Teodorescu算子$T^*$. 接下来, 根据Banach压缩映射原理证明了算子$T^*$存在唯一的不动点. 最后, 证明了Mann迭代序列强收敛于$T^*$的不动点, 进而给出了一个奇异积分方程解的迭代序列.

关键词: Clifford分析,  Teodorescu算子,  不动点定理,  Mann迭代序列 
[1] XU Xing-ye. Suffcient and necessary condition for the existence of positive entire solutions of a class of singular nonlinear polyharmonic equations#br#[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 403-412.
[2] LI Chong, ZHANG Gui-ling, XIE Yong-hong. Boundary value problems for hypergenic functions[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(2): 176-188.