Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2017, Vol. 32 Issue (1): 55-65    DOI:
    
Complete $q$th moment convergence of weighted sums for arrays of rowwise NSD random variables
GUO Ming-le, ZHU Fu-xiu
School of Math. and Comput. Sci., Anhui Normal Univ., Wuhu 241003, China
Download:
Export: BibTeX | EndNote (RIS)      

Abstract  In this paper, by using Hoffmann-Jφrgensen type probability inequality and truncation method, the sufficient conditions for complete qth moment convergence of weighted sums for arrays of rowwise NSD random variables are obtained. By using the sufficient conditions, we not only generalize and extend the corresponding results of Liang(2010) and Guo et al.(2014), but also greatly simplify their proofs.

Key wordssequences of NSD random variables      complete convergence      complete moment convergence      weighted sums     
Received: 27 April 2016      Published: 18 March 2018
CLC:  O211.4  
Cite this article:

GUO Ming-le, ZHU Fu-xiu. Complete $q$th moment convergence of weighted sums for arrays of rowwise NSD random variables. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 55-65.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2017/V32/I1/55


行为NSD随机变量阵列加权和的$q$阶矩完全收敛性

利用Hoffmann-Jφrgensen型概率不等式和截尾法, 获得了行为NSD随机变量阵列加权和的q阶矩完全收敛性的充分条件. 利用这些充分条件, 不仅推广和深化梁汉营等(2010)和郭明乐等(2014)的结论, 而且使他们的证明过程得到了极大地简化.

关键词: NSD随机变量序列,  完全收敛性,  矩完全收敛性,  加权和 
[1] TANG Xu-fei, XI Meng-mei, CHEN Wei-yang, WU Yi, WANG Xue-jun. Complete moment convergence for arrays of rowwise NA random variables[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 66-78.