Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2017, Vol. 32 Issue (1): 13-22    DOI:
    
Bifurcation of positive solutions for a class of integral boundary value problems of fractional differential equations
KONG Xiang-shan1, LI Hai-tao2 , ZHAO Hong-xin1 , LV Xun-jing1
1. Basic Science Department, Qingdao Binhai University, Qingdao 266555, China
2. School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, China
Download:
Export: BibTeX | EndNote (RIS)      

Abstract  Using bifurcation techniques and topological degree theory, this paper investigates the existence of positive solutions for a class of integral boundary value problems of fractional differential equations. Based on the property of the Green function, several sufficient conditions are presented for the existence of positive solutions. Finally, the study of an illustrative example shows that the obtained results are effective.

Key words Riemann-Liouville fractional differential equation      integral boundary value problem      bifurcation technique      positive solution     
Received: 03 September 2016      Published: 18 March 2018
CLC:  O175.6  
Cite this article:

KONG Xiang-shan, LI Hai-tao, ZHAO Hong-xin, LV Xun-jing. Bifurcation of positive solutions for a class of integral boundary value problems of fractional differential equations. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 13-22.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2017/V32/I1/13


一类分数阶微分方程积分边值问题正解的分歧性

利用分歧方法和拓扑度理论, 研究了一类带参数的分数阶微分方程积分边值问题正解的存在性. 根据格林函数的性质, 得到了系统正解的存在的若干充分条件. 最后, 通过数值例子验证了所得结果的有效性.

关键词: Riemann-Liouville分数阶微分方程,  积分边值问题,  分歧方法,  正解 
No related articles found!