Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2017, Vol. 32 Issue (1): 120-126    DOI:
    
Min-max property of fractal interpolation functions on Sierpinski gasket
LI Xiao-hui
School of Math. Sci., Zhejiang Univ., Hangzhou 310027, China
Download:
Export: BibTeX | EndNote (RIS)      

Abstract  By using properties of harmonic function, this paper discusses the min-max property of fractal interpolation function on Sierpinski gasket with uniform vertical scaling factor, and presents a necessary and sufficient condition such that the function has the same range with its basic function.

Key wordsSierpinski gasket      fractal interpolation function      harmonic function     
Received: 08 October 2016      Published: 18 March 2018
CLC:  O175.8  
  O241.3  
Cite this article:

LI Xiao-hui. Min-max property of fractal interpolation functions on Sierpinski gasket. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 120-126.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2017/V32/I1/120


Sierpinski垫片上分形插值函数的最值问题

利用调和函数的特性, 研究了Sierpinski垫片上一类具有相同纵向尺度因子的分形插值函数的最值问题, 得出它与基本函数具有相同取值范围的充分必要条件.

关键词:  Sierpinski垫片,  分形插值函数,  调和函数 
[1] LUO Hua. Existence and uniqueness of solutions for a nonlinear V-time scales boundary value problem of dynamic system[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 1-12.