Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2017, Vol. 32 Issue (1): 109-119    DOI:
    
Endpoint estimates for commutators of intrinsic square functions on the weighted weak Hardy spaces
CHEN Xiao-li, HU Qiao-zhen
Department of Mathematics, Jiangxi Normal Univ., Nanchang 330022, China
Download:
Export: BibTeX | EndNote (RIS)      

Abstract  In this paper, the authors show that the commutators generalized by a BMO function and the intrinsic area function $S_\alpha$ and $g_{\lambda,\alpha}^{\ast}$ are bounded from the weighted weak Hardy space $WH_{b,\omega}^1$ to the weak Lebesgue spaces $WL_\omega^1$.

Key words intrinsic square functions      BMO      commutator      $A_p$ weight      weighted weak Hardy spaces     
Received: 11 April 2016      Published: 18 March 2018
CLC:  O174.2  
Cite this article:

CHEN Xiao-li, HU Qiao-zhen. Endpoint estimates for commutators of intrinsic square functions on the weighted weak Hardy spaces. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 109-119.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2017/V32/I1/109


内蕴平方函数交换子在加权弱Hardy空间上的端点估计

证明了由BMO函数与$\alpha$阶内蕴面积函数$S_\alpha$和内蕴$g_{\lambda,\alpha}^{\ast}$函数生成的交换子都是由加权弱Hardy空间$WH_{b,\omega}^1$到加权弱$L^1$空间$WL_{\omega}^1$上的有界算子.

关键词: 内蕴平方函数,  BMO函数,  交换子,  $A_p$权,  加权弱Hardy空间 
No related articles found!