Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2016, Vol. 31 Issue (4): 476-490    DOI:
    
Numerical analysis of inverse elastic problem with damage
ZHENG Cong, CHENG Xiao-liang, LIANG Ke-wei
School of Math. Sci., Zhejiang Univ., HangZhou 310027, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  The quasistatic elastic problem is formulated as an elliptic system for the displacements coupled with a parabolic equation for the damage field. The corresponding inverse problem is reformulated as an optimal control problem to find a stable traction, by a given observation data. Firstly, a convex functional is constructed with Tikhonov regularization, and a stable approximation of surface traction is obtained by minimizing it. Then a finite element discretization of the inverse elastic problem is analyzed. Moreover, the error estimation of the numerical solutions is deduced. At last, a numerical algorithm is detailed and three examples illustrate the efficiency of the algorithm.

Key wordsvariational inequality      finite element method      error estimates      numerical simulations     
Received: 15 January 2016      Published: 16 May 2018
CLC:  O241.82  
Cite this article:

ZHENG Cong, CHENG Xiao-liang, LIANG Ke-wei. Numerical analysis of inverse elastic problem with damage. Applied Mathematics A Journal of Chinese Universities, 2016, 31(4): 476-490.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2016/V31/I4/476


带损伤弹性反问题的数值分析

考虑一类由椭圆性方程和热传导方程共同来刻画的准静态弹性模型, 通过给定观测值来反演边界的牵引力. 首先构造一个凸目标泛函, 并引入Tikhonov正则化方法, 使之极小化得到一个稳定的近似解. 再用有限元离散求解, 导出误差估计. 最后,用数值例子说明算法的可行性和有效性.

关键词: 变分不等式,  有限元方法,  误差估计,  数值模拟 
[1] YUAN Yu-ping, AN Zeng-long, SHA Qi. The study on the optimize algorithm of support vector machine based on variational inequalities[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 455-461.
[2] SUN Yu-dong, SHI Yi-min, TONG Hong. The pricing of step options under the nonlinear Black-Scholes model[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 262-272.