Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2016, Vol. 31 Issue (4): 379-389    DOI:
    
Parameter estimation for linear joint location and scale models with mixture skew-t-normal data
ZHU Zhi-e, WU Liu-cang, DAI Lin
Faculty of Science, Kunming University of Science and Technology, Kunming 650093, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Skew-t-normal distribution is one of the most important statistical tools to analyze the obvious peak and fat tail data. A linear mixture joint location and scale model with skew-t-normal data is proposed in this paper. The maximum likelihood estimation of the unknown parameters of this model is investigated based on Expectation Maximization (EM) algorithm and Newton-Raphson method. Furthermore, the proposed procedure works satisfactorily through Monte Carlo experiments. Finally, a real example shows that both this model and method are useful and effective.

Key wordsskew-t-normal distribution      mixture of linear joint location and scale models      EM algorithm      maximum likelihood estimation     
Received: 24 March 2016      Published: 16 May 2018
CLC:  O212.1  
Cite this article:

ZHU Zhi-e, WU Liu-cang, DAI Lin. Parameter estimation for linear joint location and scale models with mixture skew-t-normal data. Applied Mathematics A Journal of Chinese Universities, 2016, 31(4): 379-389.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2016/V31/I4/379


偏t正态数据下混合线性联合位置与尺度模型的参数估计

偏t正态分布是分析尖峰, 厚尾数据的重要统计工具之一. 研究提出了偏t正态数据下混合线性联合位置与尺度模型, 通过EM算法和Newton-Raphson方法研究了该模型参数的极大似然估计. 并通过随机模拟试验验证了所提出方法的有效性. 最后, 结合实际数据验证了该模型和方法具有实用性和可行性.

关键词: 偏t正态分布,  混合线性联合位置与尺度模型,  EM算法,  极大似然估计 
[1] NI Jia-lin, FU Ke-ang. Composite quantile estimation for moderate deviations from a unit root model with possibly infinite variance errors[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 41-48.
[2] YUAN Qiao-li, WU Liu-cang, DAI Lin. Parameters estimation for mixture of double generalized linear models [J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(3): 267-276.