Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2016, Vol. 31 Issue (3): 357-365    DOI:
    
Trapezoidal intuitionistic fuzzy bi-matrix game model with risk preference and its solving method
YANG jie1, LI Deng-feng2, LAI Li-bang3
1. College of Management, Fujian Agriculture and Forestry University, Fuzhou 350002, China
2. School of Economics and Management, Fuzhou University, Fuzhou 350116, China
3. Fujian Chuanzheng Communications College, Fuzhou 350007, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In the process of strategy choice problem, players need to estimate and rank the expected return (payoffs), and the selected results are often influenced by risk preferences in reality. So a method for trapezoidal intuitionistic fuzzy bi-matrix game with risk preference is researched in this paper. In this method, a new order relation with risk preference of trapezoidal intuitionistic fuzzy number based on the difference-index of value-index is proposed, and then the parametric bi-matrix game model is solved by bilinear programming. Lastly, the method proposed is demonstrated by a real example of the marketing enterprises’ strategy choice problem, which shows the effective and practical of the method.

Key wordsbi-matrix game      trapezoidal intuitionistic fuzzy number      risk preference      ranking method     
Received: 23 November 2015      Published: 16 May 2018
CLC:  O225  
Cite this article:

YANG jie, LI Deng-feng, LAI Li-bang. Trapezoidal intuitionistic fuzzy bi-matrix game model with risk preference and its solving method. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 357-365.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2016/V31/I3/357


具有风险偏好的梯形直觉模糊双矩阵对策模型及解法

在对策问题中, 行动方案的选择不可避免的需要对预期支付值(收益值)进行估计和排序, 且选择结果往往受到现实局中人风险偏好程度的影响. 因此, 该文针对局中人具有风险偏好及支付值为梯形直觉模糊的双矩阵对策进行了模型及求解方法的探讨. 首先, 提出了具有风险偏好的梯形直觉模糊数排序方法, 再利用双线性规划求解方法, 对梯形直觉模糊双矩阵对策进行求解. 最后以企业营销策略选择为例, 表明了该方法的有效性和实用性.

关键词: 双矩阵对策,  梯形直觉模糊数,  风险偏好,  排序方法 
No related articles found!