Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2016, Vol. 31 Issue (2): 203-214    DOI:
    
Separable solutions of geometric flow
ZHU Chun-rong, CHU Pei-pei, HUANG Shou-jun
College of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In the sense of change of variables, separable solutions to the geometrical flows are constructed by invariant subspace method and ansatz-based method. Product separable solutions and generalized functional separable solutions are included. The behavior of these solutions are described.

Key wordsgeometrical flows      separable solutions      invariant subspace method      ansatz-based method     
Received: 23 February 2016      Published: 17 May 2018
CLC:  O175.2  
Cite this article:

ZHU Chun-rong, CHU Pei-pei, HUANG Shou-jun. Separable solutions of geometric flow. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 203-214.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2016/V31/I2/203


几何流方程的分离变量解

利用不变子空间方法及拟设法, 在变量变换作用下给出双曲几何流和Ricci流的各种分离变量解, 包括乘法分离变量解和广义泛函分离变量解, 并给出了这些解的性质分析.

关键词: 几何流方程,  分离变量解,  不变子空间方法,  拟设法 
[1] XU Xing-ye. Suffcient and necessary condition for the existence of positive entire solutions of a class of singular nonlinear polyharmonic equations#br#[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 403-412.
[2] LI Jun-yan, LI Hai-yan. The bifurcation and transition for the granulation[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(3): 353-360.
[3] QI Hong-hong, JIA Gao. Multiplicity of solutions for a class of quasilinear elliptic equations with periodic variable exponents and concave-convex nonlinearities[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 294-306.
[4] OUYANG Cheng, WANG Wei-gang, SHI Lang-fang, MO Jia-qi. A class of functional asymptotic method for the generalized nonlinear disturbed Schrodinger equation[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 176-184.