Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2016, Vol. 31 Issue (2): 176-184    DOI:
    
A class of functional asymptotic method for the generalized nonlinear disturbed Schrodinger equation
OUYANG Cheng1, WANG Wei-gang2, SHI Lang-fang3, MO Jia-qi4
1. Faculty of Science, Huzhou University, Huzhou 313000, China
2. Tongcheng Teaching Department , Anqing Teacher’s College, Tongcheng 231400, China
3. College of Mathematics and Statistics, Nanjing University of Information Science & Technology, Nanjing 210044, China
4. Department of Mathematics, Anhui Normal University, Wuhu 241003, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  A class of the generalized disturbed nonlinear Schr¨odinger coupled system is studied. Using the specific technique relates to the approximate solutions, the corresponding linear system is first considered and its exact solution is obtained. Then, the functional asymptotic analytic solution of the nonlinear Schr¨odinger disturbed coupled model is found by using a valid method. The obtained asymptotic solution is an analytic expression, so it could also carry on analytic operations. These cannot happen to the simple simulate method.

Key wordsnonlinear equation      coupled system      approximate solution     
Received: 12 February 2015      Published: 17 May 2018
CLC:  O175.29  
Cite this article:

OUYANG Cheng, WANG Wei-gang, SHI Lang-fang, MO Jia-qi. A class of functional asymptotic method for the generalized nonlinear disturbed Schrodinger equation. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 176-184.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2016/V31/I2/176


一类广义非线性Schrodinger扰动方程的泛函渐近解法

研究了一类非线性Schrodinger扰动耦合系统. 利用近似解相关联的特殊方法,首先讨论了对应的线性系统, 并得到了其精确解. 再利用泛函迭代的方法得到了非线性Schrodinger扰动耦合系统的泛函渐近解析解. 这个渐近解是一个解析式, 还可对它进行解析运算. 这对使用简单的模拟方法得到的近似解是达不到的.

关键词: 非线性方程,  耦合系统,  近似解 
No related articles found!