Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2016, Vol. 31 Issue (1): 90-100    DOI:
    
Chain and $\mathbf{R}$-circle on quaternionic Heisenberg group and their properties
SHI Yun
Department of Mathematics, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  This paper defines chain and $\mathbf{R}$-circle on quaternionic hyperbolic space, and gives the property of chains under the vertical projection. The uniqueness of chain passing through two distinct points and qc-horizontality of $\mathbf{R}$-circles are proved, and the relationship between $\mathbf{R}$-circle and pure imaginary $\mathbf{R}$-circle is given.

Key wordsquaternionic hyperbolic space      quaternionic Heisenberg group      chain      $\mathbf{R}$-circle     
Received: 13 November 2015      Published: 17 May 2018
CLC:  O184  
Cite this article:

SHI Yun. Chain and $\mathbf{R}$-circle on quaternionic Heisenberg group and their properties. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 90-100.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2016/V31/I1/90


四元Heisenberg群上的链和$\mathbf{R}$-圆及其性质

定义了四元双曲空间上的链和$\mathbf{R}$-圆, 并给出了链在垂直投影下的性质. 证明了经过Heisenberg群上固定两点的链的唯一性, $\mathbf{R}$-球的qc-水平性, 并给出了$\mathbf{R}$-圆与纯虚$\mathbf{R}$-圆之间的关系.

关键词: 四元双曲空间,  四元Heisenberg群,  链,  $\mathbf{R}$-圆 
No related articles found!