Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2016, Vol. 31 Issue (1): 63-72    DOI:
    
Optimality conditions for a class of nonsmooth multi-objective programming problems
ZHOU Xuan-wei
Dept. of Basic Courses, Zhejiang Shuren Univ., Hangzhou 310015, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In this paper, a class of nonsmooth multi-objective programming problems is studied. By using generalized Farkas lemma and scalarization of multi-objective function, the optimality conditions of cone weakly efficient solution are given for the problem of minimizing a multi-objective function, where the multi-objective function is the sum of a differentiable multi-objective function and a cone convex multi-objective function, subject to a set of differentiable nonlinear functions with a controlled cone on a convex subset of a finite dimensional Euclidean space, under the conditions similar to the Abadie constraint qualification.

Key wordsnonsmooth multi-objective programming      generalized Abadie constraint qualification      generalized Farkas lemma      optimality conditions     
Received: 08 October 2015      Published: 17 May 2018
CLC:  O221.6  
Cite this article:

ZHOU Xuan-wei. Optimality conditions for a class of nonsmooth multi-objective programming problems. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 63-72.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2016/V31/I1/63


一类非光滑多目标规划问题的最优性条件

研究了一类非光滑多目标规划问题. 这类多目标规划问题的目标函数为锥凸函数与可微函数之和, 其约束条件是Euclidean空间中的锥约束. 在满足广义Abadie约束规格下, 利用广义Farkas引理和多目标函数标量化, 给出了这一类多目标规划问题的锥弱有效解最优性必要条件.

关键词: 非光滑多目标规划,  广义Abadie约束规格,  广义Farkas引理,  最优性必要条件 
No related articles found!