Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2016, Vol. 31 Issue (1): 30-38    DOI:
    
Quadratic hedging problems for non-tradable assets
YANG Jian-qi1, ZHAO Shou-juan2
1. Institute of Computational Mathematics, Hunan University of Science and Engineering, Yongzhou 425100, China
2. Department of Mathematic of Xingxiang University, Xingxiang 453003, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  The paper introduces and solves the hedging problems of non-tradable assets. Based on financial market practice, the non-tradable assets hedging model is constructed. Three meanvariance and quadratic hedging objectives are introduced on jump-diffusion model. The optimal hedging strategies, which are formulated by observable variables in backward form are given by an auxiliary process and Hilbert projection theorem. Finally the effectivity of the hedging strategies is tested via Monte Carlo.

Key wordsnon-tradable assets      jump-diffusion process      quadratic hedging      utility optimal     
Received: 25 April 2015      Published: 17 May 2018
CLC:  O211.6  
  F830.9  
Cite this article:

YANG Jian-qi, ZHAO Shou-juan. Quadratic hedging problems for non-tradable assets. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 30-38.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2016/V31/I1/30


不可交易资产的平方套期保值问题

提出并解决了不可交易资产的套期保值问题. 基于金融实际构建了不可交易资产套期保值模型, 在风险资产价格服从跳扩散模型的假设下提出了三个平方套期保值问题. 借助于一个辅助过程和Hilbert空间投影定理, 利用市场可观测量以后向形式给出了平方套期保值标准下的最优策略. 最后通过Monte Carlo方法验证了套期保值策略的有效性.

关键词: 不可交易资产,  跳扩散过程,  平方套期保值,  效用最优 
[1] LI Wen-han, LIU Li-xia, SUN Hong-yan. The call option pricing for the stocks with jump-diffusion process based on foreign exchange rate[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 21-29.