Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2015, Vol. 30 Issue (2): 165-170    DOI:
    
Dynamical behavior of SIR epidemical model with time delay
YANG Hong1,2, ZHU Huan1
1. College of Sci., Heilongjiang Bayi Agricaltural University, Daqing 163319, China
2. College of Math., Harbin Institute of Technology at Weihai, Weihai 264209, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  The stability of epidemical model is analyzed, and the time-delay effect of infected person on susceptible person is considered. In the paper, firstly, the disease-free equilibrium is globally asymptotically stable by constructing Lyapunov functional when the basic reproductive number $R_{0}<1$. Furthermore, when $R_{0}>1$, the positive equilibrium that is locally asymptotically stable and permanent is proved.

Key wordsepidemical model      time delay      stability     
Received: 29 March 2014      Published: 05 June 2018
CLC:  O175.13  
Cite this article:

YANG Hong, ZHU Huan. Dynamical behavior of SIR epidemical model with time delay. Applied Mathematics A Journal of Chinese Universities, 2015, 30(2): 165-170.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2015/V30/I2/165


一类具时滞SIR传染病模型的动力行为

分析传染病模型的稳定性, 并考虑到已感染者对易感染者的作用的时滞影响. 文中首先在$R_{0}<1$ 时, 构造一个Lyapunov泛函, 证明了无病平衡点的全局渐近稳定性. 当$R_{0}>1$ 时, 证明了正平衡点的局部渐近稳定性和持久性.

关键词: 传染病模型,  时滞,  稳定性 
[1] SHI Lei , XIAO Qing-kun , LIU Bao-qing. Existence and stability of front solutions of the amplitude equations for rotating magnetoconvection[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(2): 142-148.
[2] GAO Ping. Strong stability of $(\alpha,\beta)$-mixing sequences[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(4): 405-412.
[3] TIAN Xiao-hong, XU Rui, WANG Zhi-li. Global exponential stability and Hopf bifurcation of inertial Cohen-Grossberg neural networks with time delays in leakage terms[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(4): 428-440.
[4] LI Shao-e, FENG Wei-zhen. Practical stability of impulsive switched systems with time delay by Lyapunov-Razumikhin method[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 327-337.
[5] YANG Yu, ZHOU Jin-ling. Global stability of a diffusive virus dynamics model with Beddington-DeAngelis incidence function[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 161-166.
[6] FU Jin-bo, CHEN Lan-sun, CHENG Rong-fu. Global stability of a delayed viral infection model with latent period and immune response[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(4): 379-388.
[7] XU Chao-qun, LI Hong-en, YUAN San-ling. Study on a stochastic phage-bacteria model in which the death rate of phage is influenced by noise[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(3): 253-261.
[8] ZHANG Dao-xiang, CAO Lei. Analysis of stability and bifurcation of a SEIR epidemic model with nonlinear incidence[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(2): 157-164.
[9] YANG Xiao-zhong, ZHANG Xue, WU Li-fei. A kind of efficient difference method for time-fractional option pricing model[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(2): 234-244.