Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2014, Vol. 29 Issue (4): 475-482    DOI:
    
LI-ideals lattice and its prime elements characterizations in a lattice implication algebra
LIU Chun-hui 
Department of Mathematics and Statistics, Chifeng University, Chifeng 024001, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  The concept of LI-ideals in lattice implication algebras $L$ was further studied by using the principle and method of lattice theory. Firstly, the lattice operations $\Cap$ and $\Cup$, implication operation $\Longrightarrow$ and pseudo-complement operation $\circledast$ are defined on the set $\mathscr{I}_{LI}(L)$ which contains all LI-ideals in $L$, and $(\mathscr{I}_{LI}(L), \subseteq, \Cap, \Cup, \Longrightarrow, \{O\}, L)$ is proved to form a complete Heyting algebra. Secondly, some necessary and sufficient conditions of $(\mathscr{I}_{LI}(L), \subseteq, \Cap, \Cup, \Longrightarrow, \circledast, \{O\}, L)$ becoming a Boolean algebra are given by using properties of operation $\circledast$. Finally, some equivalent characterizations of prime elements in lattice $(\mathscr{I}_{LI}(L), \subseteq, \Cap, \Cup, \{O\}, L)$ are obtained by means of prime LI-ideals in $L$.

Key wordslattice valued logic      lattice implication algebra      LI-ideal      complete Heyting algebra      Boolean algebra      prime element     
Received: 28 April 2014      Published: 08 June 2018
CLC:  O141.1  
  O153.1  
Cite this article:

LIU Chun-hui. LI-ideals lattice and its prime elements characterizations in a lattice implication algebra. Applied Mathematics A Journal of Chinese Universities, 2014, 29(4): 475-482.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2014/V29/I4/475


格蕴涵代数的LI-理想格及其素元刻画

运用格理论的原理和方法对格蕴涵代数$L$的LI-理想概念作进一步研究. 首先, 在$L$的全体LI-理想之集$\mathscr{I}_{LI}(L)$上定义了格运算$\Cap$和$\Cup$, 蕴涵运算$\Longrightarrow$以及伪补运算$\circledast$, 证明了$(\mathscr{I}_{LI}(L), \subset, \Cap, \Cup, \Longrightarrow, \{O\}, L)$构成一个完备Heyting代数的结论. 其次, 利用运算$\circledast$的性质给出了$(\mathscr{I}_{LI}(L), \subset, \Cap, \Cup, \Longrightarrow, \circledast, \{O\}, L)$成为Boolean代数的若干充要条件. 最后, 借助于$L$的素LI-理想之特性获得了格$(\mathscr{I}_{LI}(L), \subset, \Cap, \Cup, \{O\}, L)$中素元的若干等价刻画.

关键词: 格值逻辑,  格蕴涵代数,  LI-理想,  完备Heyting代数,  Boolean代数,  素元 
[1] LIU Chun-hui. LI-ideals theory in negative non-involutive residuated lattices[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(4): 445-456.
[2] . Extended LI-ideals in lattice implication algebras[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(3): 306-320.