Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2014, Vol. 29 Issue (4): 453-461    DOI:
    
Multiplicity of solutions for quasilinear elliptic equations in $\mathbf{R}^{N}$
JIA Gao, CHEN Jie, GUO Lu-qian
College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In this paper, a class of quasilinear elliptic equations is considered in $\mathbf{R}^{N}$. By virtue of critical point theory for nonsmooth functionals, the multiple weak solutions of the equations are obtained.

Key wordsquasilinear elliptic equation      critical point theory for nonsmooth functional      variational method     
Received: 16 February 2014      Published: 08 June 2018
CLC:  O175.25  
Cite this article:

JIA Gao, CHEN Jie, GUO Lu-qian. Multiplicity of solutions for quasilinear elliptic equations in $\mathbf{R}^{N}$. Applied Mathematics A Journal of Chinese Universities, 2014, 29(4): 453-461.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2014/V29/I4/453


$\mathbf{R}^{N}$上一类拟线性椭圆型方程弱解的多重性

在$\mathbf{R}^{N}$上研究一类拟线性椭圆型方程, 借助不光滑泛函的临界点理论和山路引理, 得到该问题具有无穷多个弱解.

关键词: 拟线性椭圆型方程,  不光滑临界点理论,  变分法 
[1] XU Xing-ye. Suffcient and necessary condition for the existence of positive entire solutions of a class of singular nonlinear polyharmonic equations#br#[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 403-412.
[2] QI Hong-hong, JIA Gao. Multiplicity of solutions for a class of quasilinear elliptic equations with periodic variable exponents and concave-convex nonlinearities[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 294-306.
[3] QI Hong-hong, JIA Gao, LIU Wei. Regularity of the solutions to fourth order elliptic equations in general domains[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(4): 399-409.