Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2014, Vol. 29 Issue (3): 352-360    DOI:
    
Approximation of analytic functions with critical points by circle patterns
GUO Xiu-feng1, LAN Shi-yi2
1. School of Science, Hezhou University, Hezhou 542899, China
2. School of Science, Guangxi University for Nationalities, Nanning 530006, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  A circle pattern is a configuration of circles with prescribed intersection angles in the complex plane $\mathbf{C}$. Given a analytic function with a finite critical points defined on a bounded simply connected region ${\mathit\Omega}\subset\mathbf{C}$, the techniques of branched circle patterns is used to construct the approximating solutions of $F$. It is proved that the sequence of approximating solutions converges uniformly on compact subsets of ${\mathit\Omega}$ to the analytic function $F$. This provides a new numeral method of computing analytic functions with critical points.

Key wordstriangulation      circle pattern      analytic function      approximating solution     
Received: 15 February 2014      Published: 10 June 2018
CLC:  O175.5  
Cite this article:

GUO Xiu-feng, LAN Shi-yi. Approximation of analytic functions with critical points by circle patterns. Applied Mathematics A Journal of Chinese Universities, 2014, 29(3): 352-360.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2014/V29/I3/352


带有临界点的解析函数的圆模式逼近

一个圆模式是指复平面$\mathbf{C}$上具有特定交角的一种圆格局. 给定有界单连通区域${\mathit\Omega}\subset\mathbf{C}$内一个具有有限多个临界点的解析函数$F$, 首先利用有分枝圆模式枝术构造了 $F$的离散近似解, 然后证明了这个近似解序列在${\mathit\Omega}$的紧子集上一致收敛于该解析函数$F$. 这为带有临界点的解析函数的数值计算 提供一种新的方法.

关键词: 三角剖分,  圆模式,  解析函数,  近似解 
No related articles found!