Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2014, Vol. 29 Issue (3): 333-342    DOI:
    
Analysis of a stochastic dynamical model for echinococcosis transmission
ZHAO Yu1,2, YANG Shi-jie3
1. Business School, Univ of Shanghai for Sci. and Tech., Shanghai 200093, China
2. School of Math. and Comput. Sci., Ningxia Teachers Coll., Guyuan 756000, China
3.CDC, Institute for Parasitic Disease; Key Laboratory of Parasite and Vector Biology, MOH; WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai 200025, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  A echinococcosis transmission dynamical model with stochastic environmental fluctuation and two discrete time delays is investigated. When basic reproductive number $R_0>1$ and the threshold of noise intensity $R_0^N<1$, the stability of the infectious equilibrium point $E^*$ in probability is proved. Furthermore, the effect of white noise and delay on the control of echinococcosis transmission is discussed.

Key wordshydatid disease       Lyapunov function      Ito’s formula      time delay      stochastic stability     
Received: 08 October 2013      Published: 10 June 2018
CLC:  O175.1  
Cite this article:

ZHAO Yu, YANG Shi-jie. Analysis of a stochastic dynamical model for echinococcosis transmission. Applied Mathematics A Journal of Chinese Universities, 2014, 29(3): 333-342.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2014/V29/I3/333


一类随机细粒棘球蚴病传播动力学模型的研究

研究了一类具有随机环境波动和时滞的细粒棘球蚴病传播动力学模型, 证明了在感染再生数$R_0> 1$ 和噪声强度阈值$R_0^N<1$ 时, 感染平衡点$E^*$是依概率稳定的. 探讨了环境噪声和时滞对控制细粒棘球蚴病传播的影响.

关键词: 棘球蚴病,  Lyapunov函数,  Ito公式,  时滞,  随机稳定性 
[1] LIU Jiang, ZHANG Long, JIANG Zhong-chuan, LI Yan-qing. Synchronous control on inverter system of grid connected high-power wind generators with nonlinear and pulse disturbance#br#[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 388-402.
[2] LI Shao-e, FENG Wei-zhen. Practical stability of impulsive switched systems with time delay by Lyapunov-Razumikhin method[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 327-337.
[3] YANG Yu, ZHOU Jin-ling. Global stability of a diffusive virus dynamics model with Beddington-DeAngelis incidence function[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 161-166.
[4] FU Jin-bo, CHEN Lan-sun, CHENG Rong-fu. Global stability of a delayed viral infection model with latent period and immune response[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(4): 379-388.
[5] XU Chao-qun, LI Hong-en, YUAN San-ling. Study on a stochastic phage-bacteria model in which the death rate of phage is influenced by noise[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(3): 253-261.
[6] ZHANG Dao-xiang, CAO Lei. Analysis of stability and bifurcation of a SEIR epidemic model with nonlinear incidence[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(2): 157-164.
[7] YANG Hong, ZHU Huan. Dynamical behavior of SIR epidemical model with time delay[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(2): 165-170.