Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2014, Vol. 29 Issue (3): 253-260    DOI:
    
Complete convergence for weighted sums of arrays of rowwise extended negatively dependent random variables
XU Chen, WANG Xue-jun, WANG Qiang
School of Mathematical Sciences, Anhui University, Hefei 230601, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In this article, the complete convergence for weighted sums of arrays of rowwise extended negatively dependent random variables is obtained by using the Rosenthal type moment inequality. Some sufficient conditions to prove the complete convergence are provided. In addition, a necessary condition to prove the complete convergence is presented. The results obtained in the paper extended some corresponding ones for independent sequences and some dependent sequences.

Key wordscomplete convergence      weighted sum      extended negatively dependent random variables     
Received: 19 February 2014      Published: 10 June 2018
CLC:  O211.4  
Cite this article:

XU Chen, WANG Xue-jun, WANG Qiang. Complete convergence for weighted sums of arrays of rowwise extended negatively dependent random variables. Applied Mathematics A Journal of Chinese Universities, 2014, 29(3): 253-260.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2014/V29/I3/253


END随机变量阵列加权和的完全收敛性

利用END变量的Rosenthal型矩不等式, 研究了END随机阵列加权和的完全收敛性, 给出了证明完全收敛性的一些充分条件. 另外, 还给出了证明完全收敛性的一个必要条件. 所得结果推广了独立变量和若干相依变量的相应结果.

关键词: 完全收敛性,  加权和,  END随机变量 
[1] GUO Ming-le, ZHU Fu-xiu. Complete $q$th moment convergence of weighted sums for arrays of rowwise NSD random variables[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 55-65.
[2] DING Yang, WU Yi, WANG Xue-jun, XIE Xiu-juan, DU Ling. Complete convergence for weighted sums of widely orthant dependent random variables[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(4): 417-424.