|
|
植物过氧化物酶体的代谢功能和蛋白质组成研究进展 |
张钰婵1(),戴华鑫2,3(),潘荣辉1() |
1.浙江大学农业与生物技术学院现代种业研究所, 浙江 杭州 310058 2.中国烟草总公司郑州烟草研究院, 河南 郑州 450001 3.北京生命科技研究院, 北京 102209 |
|
Research progress on the metabolic functions and protein compositions of plant peroxisomes |
Yuchan ZHANG1(),Huaxin DAI2,3(),Ronghui PAN1() |
1.Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China 2.Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450001, Henan, China 3.Beijing Life Science Academy, Beijing 102209, China |
1 |
PAN R H, LIU J, WANG S S, et al. Peroxisomes: versatile organelles with diverse roles in plants[J]. New Phytologist, 2019, 225(4): 1410-1427. DOI: 10.1111/nph.16134
doi: 10.1111/nph.16134
|
2 |
GRAHAM I A, EASTMOND P J. Pathways of straight and branched chain fatty acid catabolism in higher plants[J]. Progress in Lipid Research, 2002, 41(2): 156-181. DOI: 10.1016/s0163-7827(01)00022-4
doi: 10.1016/s0163-7827(01)00022-4
|
3 |
POIRIER Y, ANTONENKOV V D, GLUMOFF T, et al. Peroxisomal β-oxidation—a metabolic pathway with multiple functions[J]. Biochimica et Biophysica Acta, 2006, 1763(12): 1413-1426. DOI: 10.1016/j.bbamcr.2006.08.034
doi: 10.1016/j.bbamcr.2006.08.034
|
4 |
ZOLMAN B K, SILVA I D, BARTEL B. The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid β-oxidation[J]. Plant Physiology, 2001, 127(3): 1266-1278. DOI: 10.1104/pp.010550
doi: 10.1104/pp.010550
|
5 |
HAYASHI M, NITO K, TAKEI-HOSHI R, et al. Ped3p is a peroxisomal ATP-binding cassette transporter that might supply substrates for fatty acid β-oxidation[J]. Plant & Cell Physiology, 2002, 43(1): 1-11. DOI: 10.1093/pcp/pcf023
doi: 10.1093/pcp/pcf023
|
6 |
NYATHI Y, DE MARCOS LOUSA C, VAN ROERMUND C W, et al. The Arabidopsis peroxisomal ABC transporter, comatose, complements the Saccharomyces cerevisiae pxa1 pxa2Δ mutant for metabolism of long-chain fatty acids and exhibits fatty acyl-CoA-stimulated ATPase activity[J]. The Journal of Biological Chemistry, 2010, 285(39): 29892-29902. DOI: 10.1074/jbc.M110.151225
doi: 10.1074/jbc.M110.151225
|
7 |
FULDA M, SCHNURR J, ABBADI A, et al. Peroxisomal acyl-CoA synthetase activity is essential for seedling develop-ment in Arabidopsis thaliana [J]. The Plant Cell, 2004, 16(2): 394-405. DOI: 10.1105/tpc.019646
doi: 10.1105/tpc.019646
|
8 |
GRAHAM I A. Seed storage oil mobilization[J]. Annual Review of Plant Biology, 2008, 59: 115-142. DOI: 10.1146/annurev.arplant.59.032607.092938
doi: 10.1146/annurev.arplant.59.032607.092938
|
9 |
STINTZI A, BROWSE J. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis[J]. PNAS, 2000, 97(19): 10625-10630. DOI: 10.1073/pnas.190264497
doi: 10.1073/pnas.190264497
|
10 |
BARTEL B, LECLERE S, MAGIDIN M, et al. Inputs to the active indole-3-acetic acid pool: de novo synthesis, conjugate hydrolysis, and indole-3-butyric acid β-oxidation[J]. Journal of Plant Growth Regulation, 2001, 20(3): 198-216. DOI: 10.1007/s003440010025
doi: 10.1007/s003440010025
|
11 |
ZOLMAN B K, YODER A, BARTEL B. Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes[J]. Genetics, 2000, 156(3): 1323-1337. DOI: 10.1093/genetics/156.3.1323
doi: 10.1093/genetics/156.3.1323
|
12 |
XU L, ZHAO H Y, RUAN W Y, et al. ABNORMAL INFLORESCENCE MERISTEM1 functions in salicylic acid biosynthesis to maintain proper reactive oxygen species levels for root meristem activity in rice[J]. The Plant Cell, 2017, 29(3): 560-574. DOI: 10.1105/tpc.16.00665
doi: 10.1105/tpc.16.00665
|
13 |
FUKAO Y, HAYASHI M, HARA-NISHIMURA I, et al. Novel glyoxysomal protein kinase, GPK1, identified by proteomic analysis of glyoxysomes in etiolated cotyledons of Arabidopsis thaliana [J]. Plant & Cell Physiology, 2003, 44(10): 1002-1012. DOI: 10.1093/pcp/pcg145
doi: 10.1093/pcp/pcg145
|
14 |
PRACHAROENWATTANA I, CORNAH J E, SMITH S M. Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination[J]. The Plant Cell, 2005, 17(7): 2037-2048. DOI: 10.1105/tpc.105.031856
doi: 10.1105/tpc.105.031856
|
15 |
CORNAH J E, GERMAIN V, WARD J L, et al. Lipid utili-zation, gluconeogenesis, and seedling growth in Arabidopsis mutants lacking the glyoxylate cycle enzyme malate synthase[J]. The Journal of Biological Chemistry, 2004, 279(41): 42916-42923. DOI: 10.1074/jbc.M407380200
doi: 10.1074/jbc.M407380200
|
16 |
BAUWE H, HAGEMANN M, FERNIE A R. Photorespiration: players, partners and origin[J]. Trends in Plant Science, 2010, 15(6): 330-336. DOI: 10.1016/j.tplants.2010.03.006
doi: 10.1016/j.tplants.2010.03.006
|
17 |
XU H W, ZHANG J J, ZENG J W, et al. Inducible antisense suppression of glycolate oxidase reveals its strong regulation over photosynthesis in rice[J]. Journal of Experimental Botany, 2009, 60(6): 1799-1809. DOI: 10.1093/jxb/erp056
doi: 10.1093/jxb/erp056
|
18 |
FRUGOLI J A, ZHONG H H, NUCCIO M L, et al. Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh[J]. Plant Physiology, 1996, 112(1): 327-336.
|
19 |
DU Y Y, WANG P C, CHEN J, et al. Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana [J]. Journal of Integrative Plant Biology, 2008, 50(10): 1318-1326. DOI: 10.1111/j.1744-7909.2008.00741.x
doi: 10.1111/j.1744-7909.2008.00741.x
|
20 |
PAN R H, HU J P. Proteome of plant peroxisomes[J]. Subcellular Biochemistry, 2018, 89: 3-45. DOI: 10.1007/978-981-13-2233-4_1
doi: 10.1007/978-981-13-2233-4_1
|
21 |
BABUJEE L, WURTZ V, MA C L, et al. The proteome map of spinach leaf peroxisomes indicates partial compartmen-talization of phylloquinone (vitamin K1) biosynthesis in plant peroxisomes[J]. Journal of Experimental Botany, 2010, 61(5): 1441-1453. DOI: 10.1093/jxb/erq014
doi: 10.1093/jxb/erq014
|
22 |
WIDHALM J R, DUCLUZEAU A L, BULLER N E, et al. Phylloquinone (vitamin K1) biosynthesis in plants: two peroxisomal thioesterases of lactobacillales origin hydrolyze 1, 4-dihydroxy-2-naphthoyl-CoA[J]. The Plant Journal, 2012, 71(2): 205-215. DOI: 10.1111/j.1365-313X.2012.04972.x
doi: 10.1111/j.1365-313X.2012.04972.x
|
23 |
TANABE Y, MARUYAMA J I, YAMAOKA S, et al. Peroxi-somes are involved in biotin biosynthesis in Aspergillus and Arabidopsis [J]. The Journal of Biological Chemistry, 2011, 286(35): 30455-30461. DOI: 10.1074/jbc.M111.247338
doi: 10.1074/jbc.M111.247338
|
24 |
MARUYAMA J I, YAMAOKA S, MATSUO I, et al. A newly discovered function of peroxisomes: involvement in biotin biosynthesis[J]. Plant Signaling & Behavior, 2012, 7(12): 1589-1593. DOI: 10.4161/psb.22405
doi: 10.4161/psb.22405
|
25 |
LIU M M, LU S F. Plastoquinone and ubiquinone in plants: biosynthesis, physiological function and metabolic engineering[J]. Frontiers in Plant Science, 2016, 7: 1898. DOI: 10.3389/fpls.2016.01898
doi: 10.3389/fpls.2016.01898
|
26 |
BLOCK A, WIDHALM J R, FATIHI A, et al. The origin and biosynthesis of the benzenoid moiety of ubiquinone (co-enzyme Q) in Arabidopsis [J]. The Plant Cell, 2014, 26(5): 1938-1948. DOI: 10.1105/tpc.114.125807
doi: 10.1105/tpc.114.125807
|
27 |
PLANAS-PORTELL J, GALLART M, TIBURCIO A F, et al. Copper-containing amine oxidases contribute to terminal polyamine oxidation in peroxisomes and apoplast of Arabidopsis thaliana [J]. BMC Plant Biology, 2013, 13: 109. DOI: 10.1186/1471-2229-13-109
doi: 10.1186/1471-2229-13-109
|
28 |
ZOLMAN B K, MONROE-AUGUSTUS M, THOMPSON B, et al. chy1, an Arabidopsis mutant with impaired β-oxidation, is defective in a peroxisomal β-hydroxyisobutyryl-CoA hydrolase[J]. The Journal of Biological Chemistry, 2001, 276(33): 31037-31046. DOI: 10.1074/jbc.M104679200
doi: 10.1074/jbc.M104679200
|
29 |
LANSING H, DOERING L, FISCHER K, et al. Analysis of potential redundancy among Arabidopsis 6-phosphogluco-nolactonase (PGL) isoforms in peroxisomes[J]. Journal of Experimental Botany, 2020, 71(3): 823-836. DOI: 10.1093/jxb/erz473
doi: 10.1093/jxb/erz473
|
30 |
BAUNE M C, LANSING H, FISCHER K, et al. The Arabidopsis plastidial glucose-6-phosphate transporter GPT1 is dually targeted to peroxisomes via the endoplasmic reticulum[J]. The Plant Cell, 2020, 32(5): 1703-1726. DOI: 10.1105/tpc.19.00959
doi: 10.1105/tpc.19.00959
|
31 |
LUTTERBEY M C, VON SCHAEWEN A. Analysis of homo- and hetero-dimerization among the three 6-phosphoglu-conate dehydrogenase isoforms of Arabidopsis [J]. Plant Signaling & Behavior, 2016, 11(10): e1207034. DOI: 10.1080/15592324.2016.1207034
doi: 10.1080/15592324.2016.1207034
|
32 |
POLLAK N, DÖLLE C, ZIEGLER M. The power to reduce: pyridine nucleotides-small molecules with a multitude of functions[J]. Biochemical Journal, 2007, 402(2): 205-218. DOI: 10.1042/BJ20061638
doi: 10.1042/BJ20061638
|
33 |
GAO Y, SKOWYRA M L, FENG P Q, et al. Protein import into peroxisomes occurs through a nuclear pore-like phase[J]. Science, 2022, 378(6625): eadf3971. DOI: 10.1126/science.adf3971
doi: 10.1126/science.adf3971
|
34 |
RAVINDRAN R, BACELLAR I O L, CASTELLANOS-GIROUARD X, et al. Peroxisome biogenesis initiated by protein phase separation[J]. Nature, 2023, 617(7961): 608-615. DOI: 10.1038/s41586-023-06044-1
doi: 10.1038/s41586-023-06044-1
|
35 |
KAO Y T, GONZALEZ K L, BARTEL B. Peroxisome func-tion, biogenesis, and dynamics in plants[J]. Plant Physiology, 2018, 176(1): 162-177. DOI: 10.1104/pp.17.01050
doi: 10.1104/pp.17.01050
|
36 |
KLEIN A T J, VAN DEN BERG M, BOTTGER G, et al. Saccharomyces cerevisiae acyl-CoA oxidase follows a novel, non-PTS1, import pathway into peroxisomes that is dependent on Pex5p[J]. The Journal of Biological Chemistry, 2002, 277(28): 25011-25019. DOI: 10.1074/jbc.M203254200
doi: 10.1074/jbc.M203254200
|
37 |
GUNKEL K, VAN DIJK R, VEENHUIS M, et al. Routing of Hansenula polymorpha alcohol oxidase: an alternative peroxisomal protein-sorting machinery[J]. Molecular Biology of the Cell, 2004, 15(3): 1347-1355. DOI: 10.1091/mbc.e03-04-0258
doi: 10.1091/mbc.e03-04-0258
|
38 |
VAN DER KLEI I J, VEENHUIS M. PTS1-independent sorting of peroxisomal matrix proteins by Pex5p[J]. Biochimica et Biophysica Acta, 2006, 1763(12): 1794-1800. DOI: 10.1016/j.bbamcr.2006.08.013
doi: 10.1016/j.bbamcr.2006.08.013
|
39 |
FREITAS M O, FRANCISCO T, RODRIGUES T A, et al. The peroxisomal protein import machinery displays a pre-ference for monomeric substrates[J]. Open Biology, 2015, 5(4): 140236. DOI: 10.1098/rsob.140236
doi: 10.1098/rsob.140236
|
40 |
MÖLLER G, LÜDERS J, MARKUS M, et al. Peroxisome targeting of porcine 17β-hydroxysteroid dehydrogenase type IV/D-specific multifunctional protein 2 is mediated by its C-terminal tripeptide AKI[J]. Journal of Cellular Biochemistry, 1999, 73(1): 70-78.
|
41 |
THOMS S. Import of proteins into peroxisomes: piggybacking to a new home away from home[J]. Open Biology, 2015, 5(11): 150148. DOI: 10.1098/rsob.150148
doi: 10.1098/rsob.150148
|
42 |
LEE M S, MULLEN R T, TRELEASE R N. Oilseed isocitrate lyases lacking their essential type 1 peroxisomal targeting signal are piggybacked to glyoxysomes[J]. The Plant Cell, 1997, 9(2): 185-197.
|
43 |
KATAYA A R A, HEIDARI B, HAGEN L, et al. Protein phosphatase 2A holoenzyme is targeted to peroxisomes by piggybacking and positively affects peroxisomal β-oxidation[J]. Plant Physiology, 2015, 167(2): 493-506. DOI: 10.1104/pp.114.254409
doi: 10.1104/pp.114.254409
|
44 |
KATAYA A, MITCHELL S, ETMAN R, et al. Peroxisomal protein phosphatase PP2A-B ´ theta interacts with and piggy-backs SINA-like 10 E3 ligase into peroxisomes[J]. Bioche-mical and Biophysical Research Communications, 2023, 644: 34-39. DOI: 10.1016/j.bbrc.2022.12.083
doi: 10.1016/j.bbrc.2022.12.083
|
45 |
THOMS S, DEBELYY M O, NAU K, et al. Lpx1p is a peroxi-somal lipase required for normal peroxisome morphology[J]. The FEBS Journal, 2008, 275(3): 504-514. DOI: 10.1111/j.1742-4658.2007.06217.x
doi: 10.1111/j.1742-4658.2007.06217.x
|
46 |
GABAY-MASKIT S, CRUZ-ZARAGOZA L D, SHAI N, et al. A piggybacking mechanism enables peroxisomal locali-zation of the glyoxylate cycle enzyme Mdh2 in yeast[J]. Journal of Cell Science, 2020, 133(24): jcs244376. DOI: 10.1242/jcs.244376
doi: 10.1242/jcs.244376
|
47 |
VILLAFRAZ O, BAUDOUIN H, MAZET M, et al. The trypanosome UDP-glucose pyrophosphorylase is imported by piggybacking into glycosomes, where unconventional sugar nucleotide synthesis takes place[J]. mBio, 2021, 12(3): e0037521. DOI: 10.1128/mBio.00375-21
doi: 10.1128/mBio.00375-21
|
48 |
DENG Q W, LI H, FENG Y L, et al. Defining upstream enhancing and inhibiting sequence patterns for plant peroxi-some targeting signal type 1 using large-scale in silico and in vivo analyses[J]. The Plant Journal, 2022, 111(2): 567-582. DOI: 10.1111/tpj.15840
doi: 10.1111/tpj.15840
|
49 |
REUMANN S, BUCHWALD D, LINGNER T. PredPlantPTS1: a web server for the prediction of plant peroxisomal proteins[J]. Frontiers in Plant Science, 2012, 3: 194. DOI: 10.3389/fpls.2012.00194
doi: 10.3389/fpls.2012.00194
|
50 |
WANG J, WANG Y J, GAO C J, et al. PPero, a computational model for plant PTS1 type peroxisomal protein prediction[J]. PLoS ONE, 2017, 12(1): e0168912. DOI: 10.1371/journal.pone.0168912
doi: 10.1371/journal.pone.0168912
|
51 |
KUNZE M. The type-2 peroxisomal targeting signal[J]. Bio-chimica et Biophysica Acta, 2020, 1867(2): 118609. DOI: 10.1016/j.bbamcr.2019.118609
doi: 10.1016/j.bbamcr.2019.118609
|
52 |
TSUKAMOTO T, HATA S, YOKOTA S, et al. Characteri-zation of the signal peptide at the amino terminus of the rat peroxisomal 3-ketoacyl-CoA thiolase precursor[J]. The Journal of Biological Chemistry, 1994, 269(8): 6001-6010.
|
53 |
FLYNN C R, MULLEN R T, TRELEASE R N. Mutational analyses of a type 2 peroxisomal targeting signal that is capable of directing oligomeric protein import into tobacco BY-2 glyoxysomes[J]. The Plant Journal, 1998, 16(6): 709-720.
|
54 |
GLOVER J R, ANDREWS D W, SUBRAMANI S, et al. Mutagenesis of the amino targeting signal of Saccharomyces cerevisiae 3-ketoacyl-CoA thiolase reveals conserved amino acids required for import into peroxisomes in vivo [J]. The Journal of Biological Chemistry, 1994, 269(10): 7558-7563.
|
55 |
REUMANN S, QUAN S, AUNG K, et al. In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes[J]. Plant Physiology, 2009, 150(1): 125-143. DOI: 10.1104/pp.109.137703
doi: 10.1104/pp.109.137703
|
56 |
PAN R H, REUMANN S, LISIK P, et al. Proteome analysis of peroxisomes from dark-treated senescent Arabidopsis leaves[J]. Journal of Integrative Plant Biology, 2018, 60(11): 1028-1050. DOI: 10.1111/jipb.12670
doi: 10.1111/jipb.12670
|
57 |
QUAN S, YANG P F, CASSIN-ROSS G, et al. Proteome analysis of peroxisomes from etiolated Arabidopsis seedlings identifies a peroxisomal protease involved in β-oxidation and development[J]. Plant Physiology, 2013, 163(4): 1518-1538. DOI: 10.1104/pp.113.223453
doi: 10.1104/pp.113.223453
|
58 |
ARAI Y, HAYASHI M, NISHIMURA M. Proteomic analysis of highly purified peroxisomes from etiolated soybean coty-ledons[J]. Plant & Cell Physiology, 2008, 49(4): 526-539. DOI: 10.1093/pcp/pcn027
doi: 10.1093/pcp/pcn027
|
59 |
PALMA J M, DE MORALES P Á, DEL RÍO L A, et al. The proteome of fruit peroxisomes: sweet pepper (Capsicum annuum L.) as a model[J]. Subcellular Biochemistry, 2018, 89: 323-341. DOI: 10.1007/978-981-13-2233-4_14
doi: 10.1007/978-981-13-2233-4_14
|
60 |
REUMANN S. Toward a definition of the complete proteome of plant peroxisomes: where experimental proteomics must be complemented by bioinformatics[J]. Proteomics, 2011, 11(9): 1764-1779. DOI: 10.1002/pmic.201000681
doi: 10.1002/pmic.201000681
|
61 |
REUMANN S, MA C L, LEMKE S, et al. AraPerox. A data-base of putative Arabidopsis proteins from plant peroxisomes[J]. Plant Physiology, 2004, 136(1): 2587-2608. DOI: 10.1104/pp.104.043695
doi: 10.1104/pp.104.043695
|
62 |
BODÉN M, HAWKINS J. Evolving discriminative motifs for recognizing proteins imported to the peroxisome via the PTS2 pathway[C]//Proceedings of the IEEE International Conference on Evolutionary Computation. Vancouver, BC, Canada: IEEE, 2006: 2750-2755. DOI: 10.1109/CEC.2006.1688653
doi: 10.1109/CEC.2006.1688653
|
63 |
KUNZE M, NEUBERGER G, MAURER-STROH S, et al. Structural requirements for interaction of peroxisomal targeting signal 2 and its receptor PEX7[J]. The Journal of Biological Chemistry, 2011, 286(52): 45048-45062. DOI: 10.1074/jbc.M111.301853
doi: 10.1074/jbc.M111.301853
|
64 |
LINGNER T, KATAYA A R, ANTONICELLI G E, et al. Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses[J]. The Plant Cell, 2011, 23(4): 1556-1572. DOI: 10.1105/tpc.111.084095
doi: 10.1105/tpc.111.084095
|
65 |
HU J P, BAKER A, BARTEL B, et al. Plant peroxisomes: biogenesis and function[J]. The Plant Cell, 2012, 24(6): 2279-2303. DOI: 10.1105/tpc.112.096586
doi: 10.1105/tpc.112.096586
|
66 |
SU T, LI W J, WANG P P, et al. Dynamics of peroxisome homeostasis and its role in stress response and signaling in plants[J]. Frontiers in Plant Science, 2019, 10: 705. DOI: 10.3389/fpls.2019.00705
doi: 10.3389/fpls.2019.00705
|
67 |
GU H Y, LIANG S H, ZHAO J L. Novel sequencing and genomic technologies revolutionized rice genomic study and breeding[J]. Agronomy, 2022, 12(1): 218. DOI: 10.3390/agronomy12010218
doi: 10.3390/agronomy12010218
|
68 |
MOHAMMED S, SAMAD A A, RAHMAT Z. Agrobacterium-mediated transformation of rice: constraints and possible solutions[J]. Rice Science, 2019, 26(3): 133-146. DOI: 10.1016/j.rsci.2019.04.001
doi: 10.1016/j.rsci.2019.04.001
|
69 |
ZHANG W X, WANG R, KONG D L, et al. Precise and heritable gene targeting in rice using a sequential transfor-mation strategy[J]. Cell Reports Methods, 2023, 3: 100389. DOI: 10.1016/j.crmeth.2022.100389
doi: 10.1016/j.crmeth.2022.100389
|
70 |
AYRES N M, PARK W D. Genetic transformation of rice[J]. Critical Reviews in Plant Sciences, 1994, 13(3): 219-239.
|
71 |
KAUR N, HU J P. Defining the plant peroxisomal proteome: from Arabidopsis to rice[J]. Frontiers in Plant Science, 2011, 2: 103. DOI: 10.3389/fpls.2011.00103
doi: 10.3389/fpls.2011.00103
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|