Please wait a minute...
浙江大学学报(农业与生命科学版)  2024, Vol. 50 Issue (5): 667-678    DOI: 10.3785/j.issn.1008-9209.2023.11.271
青年科学家论坛     
植物过氧化物酶体的代谢功能和蛋白质组成研究进展
张钰婵1(),戴华鑫2,3(),潘荣辉1()
1.浙江大学农业与生物技术学院现代种业研究所, 浙江 杭州 310058
2.中国烟草总公司郑州烟草研究院, 河南 郑州 450001
3.北京生命科技研究院, 北京 102209
Research progress on the metabolic functions and protein compositions of plant peroxisomes
Yuchan ZHANG1(),Huaxin DAI2,3(),Ronghui PAN1()
1.Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou 450001, Henan, China
3.Beijing Life Science Academy, Beijing 102209, China
 全文: PDF(1853 KB)   HTML
摘要:

过氧化物酶体是真核生物中普遍存在的多功能细胞器。在植物中,过氧化物酶体具有极其丰富的初级和次级代谢功能,在植物的生长发育和抗逆反应中发挥重要作用。因此,植物过氧化物酶体研究对提高农作物产量、品质和抗逆性都有重要意义。过氧化物酶体的代谢功能依赖于过氧化物酶体定位的蛋白质,包括各种酶和负责物质运输的膜蛋白,因此,揭示过氧化物酶体蛋白组成有利于了解其代谢功能。本文总结了植物过氧化物酶体的主要代谢功能,以及有关植物过氧化物酶体的蛋白质组研究,并对植物过氧化物酶体未来研究方向及其与农业的关系进行了展望。

关键词: 过氧化物酶体植物代谢功能蛋白质组    
Abstract:

Peroxisomes are multifunctional organelles that are ubiquitous in eukaryotes. In plants, peroxisomes have very diverse functions in primary and secondary metabolisms and play important roles in plant growth and development as well as in stress response. Therefore, the study of plant peroxisomes is of great significance for improving crop yield, quality and stress resistance. The metabolic functions of peroxisomes depend on peroxisome-localized proteins, including various enzymes and membrane proteins responsible for substance transport; thus revealing the protein composition of peroxisomes is beneficial for understanding their metabolic functions. This paper summarized the main metabolic functions of plant peroxisomes and the proteomic studies of plant peroxisomes. Furthermore, we concluded with an outlook on future research directions related to plant peroxisomes and their relationship with agriculture.

Key words: peroxisomes    plant    metabolic functions    proteome
收稿日期: 2023-11-27 出版日期: 2024-10-31
CLC:  Q734  
基金资助: 中国工程科技发展战略河南研究院战略咨询研究项目(2023HENZDB01);中国烟草总公司首席科学家创新专项(112023CK0820);北京生命科技研究院有限公司科技项目(2023000CC0010);国家自然科学基金项目(32200231);浙江省自然科学基金项目(LZ23C020002);国家重点研发计划项目(2022YFD1401600)
通讯作者: 戴华鑫,潘荣辉     E-mail: 11716038@zju.edu.cn;daihx@ztri.com.cn;panr@zju.edu.cn
作者简介: 张钰婵(https://orcid.org/0000-0002-3509-6597),E-mail:11716038@zju.edu.cn|潘荣辉 ,浙江大学“百人计划”研究员,博士生导师,浙江大学杭州国际科创中心“科创百人”研究员,浙江大学现代种业研究所副所长。2009年本科毕业于南京大学,2014年博士毕业于密歇根州立大学。2018年入职浙江大学,从事作物细胞代谢研究,系统解析作物能量细胞器代谢网络,重点挖掘作物能量细胞器逆境代谢和种子代谢功能。以通信作者在Trends in Biotechnology、Developmental Cell、The Plant Journal、Journal of Integrative Plant Biology、The Crop Journal、aBiotech 等期刊发表论文,并以第一作者在 PNAS、The Plant Cell、New Phytologist、Journal of Integrative Plant Biology、The Plant Journal 等期刊发表论文,参与出版《种子学》《植物生物技术》等教材,以及Subcellular Biochemistry、Methods in Photorespiration等专著。近年来入选浙江大学“仲英青年学者”、浙江大学杭州国际科创中心“青年人才卓越计划”、浙江省“领军型创新团队”等。担任Crop Design期刊编委。课题组博士后先后获得“博新计划”、中国博士后科学基金面上资助、国际引进交流计划等国家级博士后项目支持。欢迎优秀博士加入本团队。(https://orcid.org/0000-0002-4264-5566),E-mail:panr@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张钰婵
戴华鑫
潘荣辉

引用本文:

张钰婵,戴华鑫,潘荣辉. 植物过氧化物酶体的代谢功能和蛋白质组成研究进展[J]. 浙江大学学报(农业与生命科学版), 2024, 50(5): 667-678.

Yuchan ZHANG,Huaxin DAI,Ronghui PAN. Research progress on the metabolic functions and protein compositions of plant peroxisomes. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(5): 667-678.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.11.271        https://www.zjujournals.com/agr/CN/Y2024/V50/I5/667

图1  植物过氧化物酶体的代谢功能
图2  光呼吸代谢途径示意图黑色粗箭头代表光呼吸的核心代谢反应。Rubisco:核酮糖-1,5-二磷酸羧化酶/加氧酶;PGLP:2-磷酸乙醇酸磷酸酶;GLYK:甘油酸激酶;GOX:乙醇酸氧化酶;HPR1/2:羟基丙酮酸还原酶1/2;CAT2:过氧化氢酶2;GGT:谷氨酸:乙醛酸氨基转移酶;SGT:丝氨酸:乙醛酸氨基转移酶;GDC:甘氨酸脱羧酶复合体;SHMT:丝氨酸羟甲基转移酶;?表示可能存在的未知转运蛋白。
图3  植物过氧化物酶体的活性氧清除机制MDA:单脱氢抗坏血酸;ASC:抗坏血酸;APX3:抗坏血酸过氧化物酶3;MDAR1/4:单脱氢抗坏血酸还原酶1/4;CAT1/2/3:过氧化氢酶1/2/3;DHA:脱氢抗坏血酸;NAD+:烟酰胺腺嘌呤二核苷酸;NADH:还原型烟酰胺腺嘌呤二核苷酸;DHAR1:脱氢抗坏血酸还原酶1;GSTT1:谷胱甘肽巯基转移酶θ1;GSH:谷胱甘肽;GSSG:氧化型谷胱甘肽;GR1:谷胱甘肽还原酶1;NADP+:烟酰胺腺嘌呤二核苷酸磷酸;NADPH:还原型烟酰胺腺嘌呤二核苷酸磷酸。
图4  植物过氧化物酶体蛋白引入机制PTS:过氧化物酶体靶向信号;PMP:过氧化物酶体膜蛋白。
1 PAN R H, LIU J, WANG S S, et al. Peroxisomes: versatile organelles with diverse roles in plants[J]. New Phytologist, 2019, 225(4): 1410-1427. DOI: 10.1111/nph.16134
doi: 10.1111/nph.16134
2 GRAHAM I A, EASTMOND P J. Pathways of straight and branched chain fatty acid catabolism in higher plants[J]. Progress in Lipid Research, 2002, 41(2): 156-181. DOI: 10.1016/s0163-7827(01)00022-4
doi: 10.1016/s0163-7827(01)00022-4
3 POIRIER Y, ANTONENKOV V D, GLUMOFF T, et al. Peroxisomal β-oxidation—a metabolic pathway with multiple functions[J]. Biochimica et Biophysica Acta, 2006, 1763(12): 1413-1426. DOI: 10.1016/j.bbamcr.2006.08.034
doi: 10.1016/j.bbamcr.2006.08.034
4 ZOLMAN B K, SILVA I D, BARTEL B. The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid β-oxidation[J]. Plant Physiology, 2001, 127(3): 1266-1278. DOI: 10.1104/pp.010550
doi: 10.1104/pp.010550
5 HAYASHI M, NITO K, TAKEI-HOSHI R, et al. Ped3p is a peroxisomal ATP-binding cassette transporter that might supply substrates for fatty acid β-oxidation[J]. Plant & Cell Physiology, 2002, 43(1): 1-11. DOI: 10.1093/pcp/pcf023
doi: 10.1093/pcp/pcf023
6 NYATHI Y, DE MARCOS LOUSA C, VAN ROERMUND C W, et al. The Arabidopsis peroxisomal ABC transporter, comatose, complements the Saccharomyces cerevisiae pxa1 pxa2Δ mutant for metabolism of long-chain fatty acids and exhibits fatty acyl-CoA-stimulated ATPase activity[J]. The Journal of Biological Chemistry, 2010, 285(39): 29892-29902. DOI: 10.1074/jbc.M110.151225
doi: 10.1074/jbc.M110.151225
7 FULDA M, SCHNURR J, ABBADI A, et al. Peroxisomal acyl-CoA synthetase activity is essential for seedling develop-ment in Arabidopsis thaliana [J]. The Plant Cell, 2004, 16(2): 394-405. DOI: 10.1105/tpc.019646
doi: 10.1105/tpc.019646
8 GRAHAM I A. Seed storage oil mobilization[J]. Annual Review of Plant Biology, 2008, 59: 115-142. DOI: 10.1146/annurev.arplant.59.032607.092938
doi: 10.1146/annurev.arplant.59.032607.092938
9 STINTZI A, BROWSE J. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis[J]. PNAS, 2000, 97(19): 10625-10630. DOI: 10.1073/pnas.190264497
doi: 10.1073/pnas.190264497
10 BARTEL B, LECLERE S, MAGIDIN M, et al. Inputs to the active indole-3-acetic acid pool: de novo synthesis, conjugate hydrolysis, and indole-3-butyric acid β-oxidation[J]. Journal of Plant Growth Regulation, 2001, 20(3): 198-216. DOI: 10.1007/s003440010025
doi: 10.1007/s003440010025
11 ZOLMAN B K, YODER A, BARTEL B. Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes[J]. Genetics, 2000, 156(3): 1323-1337. DOI: 10.1093/genetics/156.3.1323
doi: 10.1093/genetics/156.3.1323
12 XU L, ZHAO H Y, RUAN W Y, et al. ABNORMAL INFLORESCENCE MERISTEM1 functions in salicylic acid biosynthesis to maintain proper reactive oxygen species levels for root meristem activity in rice[J]. The Plant Cell, 2017, 29(3): 560-574. DOI: 10.1105/tpc.16.00665
doi: 10.1105/tpc.16.00665
13 FUKAO Y, HAYASHI M, HARA-NISHIMURA I, et al. Novel glyoxysomal protein kinase, GPK1, identified by proteomic analysis of glyoxysomes in etiolated cotyledons of Arabidopsis thaliana [J]. Plant & Cell Physiology, 2003, 44(10): 1002-1012. DOI: 10.1093/pcp/pcg145
doi: 10.1093/pcp/pcg145
14 PRACHAROENWATTANA I, CORNAH J E, SMITH S M. Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination[J]. The Plant Cell, 2005, 17(7): 2037-2048. DOI: 10.1105/tpc.105.031856
doi: 10.1105/tpc.105.031856
15 CORNAH J E, GERMAIN V, WARD J L, et al. Lipid utili-zation, gluconeogenesis, and seedling growth in Arabidopsis mutants lacking the glyoxylate cycle enzyme malate synthase[J]. The Journal of Biological Chemistry, 2004, 279(41): 42916-42923. DOI: 10.1074/jbc.M407380200
doi: 10.1074/jbc.M407380200
16 BAUWE H, HAGEMANN M, FERNIE A R. Photorespiration: players, partners and origin[J]. Trends in Plant Science, 2010, 15(6): 330-336. DOI: 10.1016/j.tplants.2010.03.006
doi: 10.1016/j.tplants.2010.03.006
17 XU H W, ZHANG J J, ZENG J W, et al. Inducible antisense suppression of glycolate oxidase reveals its strong regulation over photosynthesis in rice[J]. Journal of Experimental Botany, 2009, 60(6): 1799-1809. DOI: 10.1093/jxb/erp056
doi: 10.1093/jxb/erp056
18 FRUGOLI J A, ZHONG H H, NUCCIO M L, et al. Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh[J]. Plant Physiology, 1996, 112(1): 327-336.
19 DU Y Y, WANG P C, CHEN J, et al. Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana [J]. Journal of Integrative Plant Biology, 2008, 50(10): 1318-1326. DOI: 10.1111/j.1744-7909.2008.00741.x
doi: 10.1111/j.1744-7909.2008.00741.x
20 PAN R H, HU J P. Proteome of plant peroxisomes[J]. Subcellular Biochemistry, 2018, 89: 3-45. DOI: 10.1007/978-981-13-2233-4_1
doi: 10.1007/978-981-13-2233-4_1
21 BABUJEE L, WURTZ V, MA C L, et al. The proteome map of spinach leaf peroxisomes indicates partial compartmen-talization of phylloquinone (vitamin K1) biosynthesis in plant peroxisomes[J]. Journal of Experimental Botany, 2010, 61(5): 1441-1453. DOI: 10.1093/jxb/erq014
doi: 10.1093/jxb/erq014
22 WIDHALM J R, DUCLUZEAU A L, BULLER N E, et al. Phylloquinone (vitamin K1) biosynthesis in plants: two peroxisomal thioesterases of lactobacillales origin hydrolyze 1, 4-dihydroxy-2-naphthoyl-CoA[J]. The Plant Journal, 2012, 71(2): 205-215. DOI: 10.1111/j.1365-313X.2012.04972.x
doi: 10.1111/j.1365-313X.2012.04972.x
23 TANABE Y, MARUYAMA J I, YAMAOKA S, et al. Peroxi-somes are involved in biotin biosynthesis in Aspergillus and Arabidopsis [J]. The Journal of Biological Chemistry, 2011, 286(35): 30455-30461. DOI: 10.1074/jbc.M111.247338
doi: 10.1074/jbc.M111.247338
24 MARUYAMA J I, YAMAOKA S, MATSUO I, et al. A newly discovered function of peroxisomes: involvement in biotin biosynthesis[J]. Plant Signaling & Behavior, 2012, 7(12): 1589-1593. DOI: 10.4161/psb.22405
doi: 10.4161/psb.22405
25 LIU M M, LU S F. Plastoquinone and ubiquinone in plants: biosynthesis, physiological function and metabolic engineering[J]. Frontiers in Plant Science, 2016, 7: 1898. DOI: 10.3389/fpls.2016.01898
doi: 10.3389/fpls.2016.01898
26 BLOCK A, WIDHALM J R, FATIHI A, et al. The origin and biosynthesis of the benzenoid moiety of ubiquinone (co-enzyme Q) in Arabidopsis [J]. The Plant Cell, 2014, 26(5): 1938-1948. DOI: 10.1105/tpc.114.125807
doi: 10.1105/tpc.114.125807
27 PLANAS-PORTELL J, GALLART M, TIBURCIO A F, et al. Copper-containing amine oxidases contribute to terminal polyamine oxidation in peroxisomes and apoplast of Arabidopsis thaliana [J]. BMC Plant Biology, 2013, 13: 109. DOI: 10.1186/1471-2229-13-109
doi: 10.1186/1471-2229-13-109
28 ZOLMAN B K, MONROE-AUGUSTUS M, THOMPSON B, et al. chy1, an Arabidopsis mutant with impaired β-oxidation, is defective in a peroxisomal β-hydroxyisobutyryl-CoA hydrolase[J]. The Journal of Biological Chemistry, 2001, 276(33): 31037-31046. DOI: 10.1074/jbc.M104679200
doi: 10.1074/jbc.M104679200
29 LANSING H, DOERING L, FISCHER K, et al. Analysis of potential redundancy among Arabidopsis 6-phosphogluco-nolactonase (PGL) isoforms in peroxisomes[J]. Journal of Experimental Botany, 2020, 71(3): 823-836. DOI: 10.1093/jxb/erz473
doi: 10.1093/jxb/erz473
30 BAUNE M C, LANSING H, FISCHER K, et al. The Arabidopsis plastidial glucose-6-phosphate transporter GPT1 is dually targeted to peroxisomes via the endoplasmic reticulum[J]. The Plant Cell, 2020, 32(5): 1703-1726. DOI: 10.1105/tpc.19.00959
doi: 10.1105/tpc.19.00959
31 LUTTERBEY M C, VON SCHAEWEN A. Analysis of homo- and hetero-dimerization among the three 6-phosphoglu-conate dehydrogenase isoforms of Arabidopsis [J]. Plant Signaling & Behavior, 2016, 11(10): e1207034. DOI: 10.1080/15592324.2016.1207034
doi: 10.1080/15592324.2016.1207034
32 POLLAK N, DÖLLE C, ZIEGLER M. The power to reduce: pyridine nucleotides-small molecules with a multitude of functions[J]. Biochemical Journal, 2007, 402(2): 205-218. DOI: 10.1042/BJ20061638
doi: 10.1042/BJ20061638
33 GAO Y, SKOWYRA M L, FENG P Q, et al. Protein import into peroxisomes occurs through a nuclear pore-like phase[J]. Science, 2022, 378(6625): eadf3971. DOI: 10.1126/science.adf3971
doi: 10.1126/science.adf3971
34 RAVINDRAN R, BACELLAR I O L, CASTELLANOS-GIROUARD X, et al. Peroxisome biogenesis initiated by protein phase separation[J]. Nature, 2023, 617(7961): 608-615. DOI: 10.1038/s41586-023-06044-1
doi: 10.1038/s41586-023-06044-1
35 KAO Y T, GONZALEZ K L, BARTEL B. Peroxisome func-tion, biogenesis, and dynamics in plants[J]. Plant Physiology, 2018, 176(1): 162-177. DOI: 10.1104/pp.17.01050
doi: 10.1104/pp.17.01050
36 KLEIN A T J, VAN DEN BERG M, BOTTGER G, et al. Saccharomyces cerevisiae acyl-CoA oxidase follows a novel, non-PTS1, import pathway into peroxisomes that is dependent on Pex5p[J]. The Journal of Biological Chemistry, 2002, 277(28): 25011-25019. DOI: 10.1074/jbc.M203254200
doi: 10.1074/jbc.M203254200
37 GUNKEL K, VAN DIJK R, VEENHUIS M, et al. Routing of Hansenula polymorpha alcohol oxidase: an alternative peroxisomal protein-sorting machinery[J]. Molecular Biology of the Cell, 2004, 15(3): 1347-1355. DOI: 10.1091/mbc.e03-04-0258
doi: 10.1091/mbc.e03-04-0258
38 VAN DER KLEI I J, VEENHUIS M. PTS1-independent sorting of peroxisomal matrix proteins by Pex5p[J]. Biochimica et Biophysica Acta, 2006, 1763(12): 1794-1800. DOI: 10.1016/j.bbamcr.2006.08.013
doi: 10.1016/j.bbamcr.2006.08.013
39 FREITAS M O, FRANCISCO T, RODRIGUES T A, et al. The peroxisomal protein import machinery displays a pre-ference for monomeric substrates[J]. Open Biology, 2015, 5(4): 140236. DOI: 10.1098/rsob.140236
doi: 10.1098/rsob.140236
40 MÖLLER G, LÜDERS J, MARKUS M, et al. Peroxisome targeting of porcine 17β-hydroxysteroid dehydrogenase type IV/D-specific multifunctional protein 2 is mediated by its C-terminal tripeptide AKI[J]. Journal of Cellular Biochemistry, 1999, 73(1): 70-78.
41 THOMS S. Import of proteins into peroxisomes: piggybacking to a new home away from home[J]. Open Biology, 2015, 5(11): 150148. DOI: 10.1098/rsob.150148
doi: 10.1098/rsob.150148
42 LEE M S, MULLEN R T, TRELEASE R N. Oilseed isocitrate lyases lacking their essential type 1 peroxisomal targeting signal are piggybacked to glyoxysomes[J]. The Plant Cell, 1997, 9(2): 185-197.
43 KATAYA A R A, HEIDARI B, HAGEN L, et al. Protein phosphatase 2A holoenzyme is targeted to peroxisomes by piggybacking and positively affects peroxisomal β-oxidation[J]. Plant Physiology, 2015, 167(2): 493-506. DOI: 10.1104/pp.114.254409
doi: 10.1104/pp.114.254409
44 KATAYA A, MITCHELL S, ETMAN R, et al. Peroxisomal protein phosphatase PP2A-B ´ theta interacts with and piggy-backs SINA-like 10 E3 ligase into peroxisomes[J]. Bioche-mical and Biophysical Research Communications, 2023, 644: 34-39. DOI: 10.1016/j.bbrc.2022.12.083
doi: 10.1016/j.bbrc.2022.12.083
45 THOMS S, DEBELYY M O, NAU K, et al. Lpx1p is a peroxi-somal lipase required for normal peroxisome morphology[J]. The FEBS Journal, 2008, 275(3): 504-514. DOI: 10.1111/j.1742-4658.2007.06217.x
doi: 10.1111/j.1742-4658.2007.06217.x
46 GABAY-MASKIT S, CRUZ-ZARAGOZA L D, SHAI N, et al. A piggybacking mechanism enables peroxisomal locali-zation of the glyoxylate cycle enzyme Mdh2 in yeast[J]. Journal of Cell Science, 2020, 133(24): jcs244376. DOI: 10.1242/jcs.244376
doi: 10.1242/jcs.244376
47 VILLAFRAZ O, BAUDOUIN H, MAZET M, et al. The trypanosome UDP-glucose pyrophosphorylase is imported by piggybacking into glycosomes, where unconventional sugar nucleotide synthesis takes place[J]. mBio, 2021, 12(3): e0037521. DOI: 10.1128/mBio.00375-21
doi: 10.1128/mBio.00375-21
48 DENG Q W, LI H, FENG Y L, et al. Defining upstream enhancing and inhibiting sequence patterns for plant peroxi-some targeting signal type 1 using large-scale in silico and in vivo analyses[J]. The Plant Journal, 2022, 111(2): 567-582. DOI: 10.1111/tpj.15840
doi: 10.1111/tpj.15840
49 REUMANN S, BUCHWALD D, LINGNER T. PredPlantPTS1: a web server for the prediction of plant peroxisomal proteins[J]. Frontiers in Plant Science, 2012, 3: 194. DOI: 10.3389/fpls.2012.00194
doi: 10.3389/fpls.2012.00194
50 WANG J, WANG Y J, GAO C J, et al. PPero, a computational model for plant PTS1 type peroxisomal protein prediction[J]. PLoS ONE, 2017, 12(1): e0168912. DOI: 10.1371/journal.pone.0168912
doi: 10.1371/journal.pone.0168912
51 KUNZE M. The type-2 peroxisomal targeting signal[J]. Bio-chimica et Biophysica Acta, 2020, 1867(2): 118609. DOI: 10.1016/j.bbamcr.2019.118609
doi: 10.1016/j.bbamcr.2019.118609
52 TSUKAMOTO T, HATA S, YOKOTA S, et al. Characteri-zation of the signal peptide at the amino terminus of the rat peroxisomal 3-ketoacyl-CoA thiolase precursor[J]. The Journal of Biological Chemistry, 1994, 269(8): 6001-6010.
53 FLYNN C R, MULLEN R T, TRELEASE R N. Mutational analyses of a type 2 peroxisomal targeting signal that is capable of directing oligomeric protein import into tobacco BY-2 glyoxysomes[J]. The Plant Journal, 1998, 16(6): 709-720.
54 GLOVER J R, ANDREWS D W, SUBRAMANI S, et al. Mutagenesis of the amino targeting signal of Saccharomyces cerevisiae 3-ketoacyl-CoA thiolase reveals conserved amino acids required for import into peroxisomes in vivo [J]. The Journal of Biological Chemistry, 1994, 269(10): 7558-7563.
55 REUMANN S, QUAN S, AUNG K, et al. In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes[J]. Plant Physiology, 2009, 150(1): 125-143. DOI: 10.1104/pp.109.137703
doi: 10.1104/pp.109.137703
56 PAN R H, REUMANN S, LISIK P, et al. Proteome analysis of peroxisomes from dark-treated senescent Arabidopsis leaves[J]. Journal of Integrative Plant Biology, 2018, 60(11): 1028-1050. DOI: 10.1111/jipb.12670
doi: 10.1111/jipb.12670
57 QUAN S, YANG P F, CASSIN-ROSS G, et al. Proteome analysis of peroxisomes from etiolated Arabidopsis seedlings identifies a peroxisomal protease involved in β-oxidation and development[J]. Plant Physiology, 2013, 163(4): 1518-1538. DOI: 10.1104/pp.113.223453
doi: 10.1104/pp.113.223453
58 ARAI Y, HAYASHI M, NISHIMURA M. Proteomic analysis of highly purified peroxisomes from etiolated soybean coty-ledons[J]. Plant & Cell Physiology, 2008, 49(4): 526-539. DOI: 10.1093/pcp/pcn027
doi: 10.1093/pcp/pcn027
59 PALMA J M, DE MORALES P Á, DEL RÍO L A, et al. The proteome of fruit peroxisomes: sweet pepper (Capsicum annuum L.) as a model[J]. Subcellular Biochemistry, 2018, 89: 323-341. DOI: 10.1007/978-981-13-2233-4_14
doi: 10.1007/978-981-13-2233-4_14
60 REUMANN S. Toward a definition of the complete proteome of plant peroxisomes: where experimental proteomics must be complemented by bioinformatics[J]. Proteomics, 2011, 11(9): 1764-1779. DOI: 10.1002/pmic.201000681
doi: 10.1002/pmic.201000681
61 REUMANN S, MA C L, LEMKE S, et al. AraPerox. A data-base of putative Arabidopsis proteins from plant peroxisomes[J]. Plant Physiology, 2004, 136(1): 2587-2608. DOI: 10.1104/pp.104.043695
doi: 10.1104/pp.104.043695
62 BODÉN M, HAWKINS J. Evolving discriminative motifs for recognizing proteins imported to the peroxisome via the PTS2 pathway[C]//Proceedings of the IEEE International Conference on Evolutionary Computation. Vancouver, BC, Canada: IEEE, 2006: 2750-2755. DOI: 10.1109/CEC.2006.1688653
doi: 10.1109/CEC.2006.1688653
63 KUNZE M, NEUBERGER G, MAURER-STROH S, et al. Structural requirements for interaction of peroxisomal targeting signal 2 and its receptor PEX7[J]. The Journal of Biological Chemistry, 2011, 286(52): 45048-45062. DOI: 10.1074/jbc.M111.301853
doi: 10.1074/jbc.M111.301853
64 LINGNER T, KATAYA A R, ANTONICELLI G E, et al. Identification of novel plant peroxisomal targeting signals by a combination of machine learning methods and in vivo subcellular targeting analyses[J]. The Plant Cell, 2011, 23(4): 1556-1572. DOI: 10.1105/tpc.111.084095
doi: 10.1105/tpc.111.084095
65 HU J P, BAKER A, BARTEL B, et al. Plant peroxisomes: biogenesis and function[J]. The Plant Cell, 2012, 24(6): 2279-2303. DOI: 10.1105/tpc.112.096586
doi: 10.1105/tpc.112.096586
66 SU T, LI W J, WANG P P, et al. Dynamics of peroxisome homeostasis and its role in stress response and signaling in plants[J]. Frontiers in Plant Science, 2019, 10: 705. DOI: 10.3389/fpls.2019.00705
doi: 10.3389/fpls.2019.00705
67 GU H Y, LIANG S H, ZHAO J L. Novel sequencing and genomic technologies revolutionized rice genomic study and breeding[J]. Agronomy, 2022, 12(1): 218. DOI: 10.3390/agronomy12010218
doi: 10.3390/agronomy12010218
68 MOHAMMED S, SAMAD A A, RAHMAT Z. Agrobacterium-mediated transformation of rice: constraints and possible solutions[J]. Rice Science, 2019, 26(3): 133-146. DOI: 10.1016/j.rsci.2019.04.001
doi: 10.1016/j.rsci.2019.04.001
69 ZHANG W X, WANG R, KONG D L, et al. Precise and heritable gene targeting in rice using a sequential transfor-mation strategy[J]. Cell Reports Methods, 2023, 3: 100389. DOI: 10.1016/j.crmeth.2022.100389
doi: 10.1016/j.crmeth.2022.100389
70 AYRES N M, PARK W D. Genetic transformation of rice[J]. Critical Reviews in Plant Sciences, 1994, 13(3): 219-239.
71 KAUR N, HU J P. Defining the plant peroxisomal proteome: from Arabidopsis to rice[J]. Frontiers in Plant Science, 2011, 2: 103. DOI: 10.3389/fpls.2011.00103
doi: 10.3389/fpls.2011.00103
[1] 何文静,张亚东,张超,仲键,陈楚真,葛洋,何舒琰,祝增荣,周文武. StSOBIR1类似基因沉默对马铃薯应答虫害的影响[J]. 浙江大学学报(农业与生命科学版), 2024, 50(4): 615-632.
[2] 孙子越,陶增. 表观遗传调控在植物病原真菌发育和致病过程中的作用与分子机制[J]. 浙江大学学报(农业与生命科学版), 2024, 50(3): 469-480.
[3] 黄子洋,刘洁,康婕,任梓铭,崔祺,李东泽,夏宜平,马斯,吴昀. 观赏植物糖转运蛋白研究进展[J]. 浙江大学学报(农业与生命科学版), 2024, 50(1): 12-24.
[4] 毕冉冉,赵圆,孙玉敬. 枸杞植物化学成分调节肠道菌群及相关生理功能的研究进展[J]. 浙江大学学报(农业与生命科学版), 2024, 50(1): 25-34.
[5] 张靳宜,张亚东,MUNAWAR Asim,郑亚强,祝增荣,周文武. 番茄潜麦蛾生物防治研究进展[J]. 浙江大学学报(农业与生命科学版), 2023, 49(2): 141-148.
[6] 牟鲯璃,陈开俊,李雨航,李廷强. 氧化锌纳米颗粒对生菜养分吸收及光合作用的影响[J]. 浙江大学学报(农业与生命科学版), 2023, 49(2): 229-240.
[7] 李艾凝,姜百惠,李桂新,丁忠杰,郑绍建. 乙烯调控植物营养缺乏胁迫响应的分子机制[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 14-22.
[8] 金晶,闾怡清,何卫中,疏再发,叶俭慧,梁月荣. 不同遮阴处理对茶树叶片主要植物激素生物合成的影响[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 45-54.
[9] 都慧,王晓伟,刘树生. 唾液效应因子BtArmet靶向NtWRKY51调控烟草防御烟粉虱的分子机制[J]. 浙江大学学报(农业与生命科学版), 2022, 48(6): 753-760.
[10] 陈勇,江唯健,王加俊,张帆,沈立荣. 超高效液相色谱-串联质谱法定量检测蜂王浆主蛋白1~3[J]. 浙江大学学报(农业与生命科学版), 2022, 48(6): 776-786.
[11] 刘梦娇,易航,蔡新忠. 环核苷酸门控离子通道基因CNGC3正调控拟南芥抗核盘菌免疫[J]. 浙江大学学报(农业与生命科学版), 2022, 48(5): 594-604.
[12] 瞿瑜婷,张前前,俞叶飞,沙衣哈力·对先阿力,蔡琳琳,张苏炯,李永夫,李永春. 根际微生态视角下药用植物连作障碍机制和缓解措施研究进展[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 403-414.
[13] 张旭阳,刘英,龙林丽,苏永东,陈东兴,陈孝杨. 干旱半干旱区采煤沉陷引起的土壤水分变化及其对植物生理生态潜在影响分析综述[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 415-425.
[14] 吕雪祺, 许颖, 黄莹莹, 刘明启, 翁晓燕. 转录因子OsbHLH59通过调控木聚糖酶抑制蛋白OsXIP表达水平影响水稻抗褐飞虱的机制研究(英文)[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 453-464.
[15] 戴艳娇,贺爱国,胡志鑫,柏连阳,赵硕,聂阳阳,陈锦. 植物修复用伴矿景天种苗质量分级标准研究[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 473-482.