Please wait a minute...
浙江大学学报(农业与生命科学版)  2024, Vol. 50 Issue (5): 703-714    DOI: 10.3785/j.issn.1008-9209.2023.08.181
综述     
饮食通过影响肠道微生物群改善炎症性肠病的研究进展
陈亿豪1(),潘海波1,2,吴冬梅1,叶兴乾1,陈士国1,2,3,4()
1.浙江大学生物系统工程与食品科学学院/智能食品加工技术与装备国家地方联合工程实验室/浙江省农产品加工技术研究重点实验室/南方果蔬保鲜技术集成科研基地/浙江省健康食品制造与品质控制国际合作基地,浙江 杭州 310058
2.浙江大学长三角智慧绿洲创新中心,浙江 嘉兴 314102
3.浙江大学馥莉食品研究院,浙江 杭州 310058
4.浙江大学宁波研究院,浙江 宁波 315100
Research progress on diet influencing gut microbiota to improve inflammatory bowel disease
Yihao CHEN1(),Haibo PAN1,2,Dongmei WU1,Xingqian YE1,Shiguo CHEN1,2,3,4()
1.College of Biosystems Engineering and Food Science/National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment/Zhejiang Key Laboratory for Agro-Food Processing/Integrated Research Base of Southern Fruit and Vegetable Preservation Technology/Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, Zhejiang, China
3.Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
4.Ningbo Research Institute, Zhejiang University, Ningbo 315100, Zhejiang, China
 全文: PDF(2853 KB)   HTML
摘要:

炎症性肠病(inflammatory bowel disease, IBD)是受遗传、环境和肠道微生物群等多种因素影响的慢性疾病。近年来,随着对IBD的认知逐渐加深,人们发现肠道微环境的变化可能在IBD发病机制及其治疗过程中发挥不可或缺的作用。大量研究表明,控制饮食可能影响机体肠道微环境,如肠道微生物组成等。因此,通过饮食调节肠道微生物来缓解IBD的治疗思路成为颇具前景的新型治疗策略。本文综述了不同饮食模式及膳食成分对IBD患者肠道微生物群的影响,分析了饮食干预对IBD患者肠道微生物群的调节机制,展望了通过饮食调节预防或改善IBD的可行性。

关键词: 炎症性肠病肠道微生物群饮食    
Abstract:

Inflammatory bowel disease (IBD) is a chronic disease that is influenced by a variety of factors, including genetics, environment and gut microbiota. In recent years, with the gradual deepening of IBD understanding, it has been discovered that changes in the gut microenvironment may play indispensable roles in the pathogenesis and treatment of IBD. A large number of studies have shown that controlling diet may affect the gut microen-vironment, such as the composition of the gut microbiota. Therefore, the idea of alleviating IBD by diet regulating gut microbiota has become a promising new therapeutic strategy. This paper reviews the effects of different diet patterns and dietary components on the gut microbiota of IBD patients, analyzes the regulatory mechanism of diet intervention on the gut microbiota of IBD patients, and looks forward to the feasibility of preventing or improving IBD through dietary regulation.

Key words: inflammatory bowel disease    gut microbiota    diet
收稿日期: 2023-08-18 出版日期: 2024-10-31
CLC:  TS201  
基金资助: 国家重点研发计划课题“食品重要功能物质的绿色高效制备及生物转化机制”(2022YFF1100204)
通讯作者: 陈士国     E-mail: 18157121378@163.com;chenshiguo210@163.com
作者简介: 陈亿豪(https://orcid.org/0009-0004-1791-6899),E-mail:18157121378@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈亿豪
潘海波
吴冬梅
叶兴乾
陈士国

引用本文:

陈亿豪,潘海波,吴冬梅,叶兴乾,陈士国. 饮食通过影响肠道微生物群改善炎症性肠病的研究进展[J]. 浙江大学学报(农业与生命科学版), 2024, 50(5): 703-714.

Yihao CHEN,Haibo PAN,Dongmei WU,Xingqian YE,Shiguo CHEN. Research progress on diet influencing gut microbiota to improve inflammatory bowel disease. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(5): 703-714.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.08.181        https://www.zjujournals.com/agr/CN/Y2024/V50/I5/703

图1  肠道菌群失调对IBD患者的影响素材来源于BioRender网站(https://www.biorender.com),图2~3同。REG3γ:再生胰岛衍生蛋白3γ;MyD88:髓系分化初级反应蛋白质88;TGF:转化生长因子;IgA:免疫球蛋白A。

饮食

Diet

方法

Method

结果

Result

文献

Reference

CD排除饮食

CD exclusion diet

给予47名CD患者6周CD排除饮食治疗近70%患者的症状得到有效缓解[43]

CD排除饮食

CD exclusion diet

给予32名CD患者12周CD排除饮食治疗,并在第6、12周观测CD活动度指数和钙保护素水平,完成IBD问卷调查80%以上患者的症状得到有效缓解[44]

CD排除饮食

CD exclusion diet

对40名患者进行24周CD排除饮食治疗,并进行结肠镜检查对成人轻度至中度CD的诱导和缓解有效[45]

特定碳水化合物饮食

Specific carbohydrate diet

回顾运用特定碳水化合物饮食治疗的26例IBD患者情况,观察儿童CD/UC活动度指数所有IBD患者的疾病活动指数均呈现下降趋势[46]

特定碳水化合物饮食

Specific carbohydrate diet

对服用特定碳水化合物饮食的患者进行52周的检测,并选取9人检测其热量需求和疾病活动指数所有患者疾病活动指数得到相应改善,有患者黏膜得以愈合[47]

特定碳水化合物饮食

Specific carbohydrate diet

对12名儿童IBD患者进行特定碳水化合物饮食治疗,观察其肠道微生物情况接受治疗后肠道生态失调现象有明显改善[48]

抗炎饮食

Anti-inflammatory diet

对195名UC患者进行48周有益菌抗炎饮食治疗无明显效果[49]

抗炎饮食

Anti-inflammatory diet

对60名UC患者进行6个月的抗炎饮食治疗,检测其粪便中钙卫蛋白含量,并进行结肠镜检查抗炎饮食组患者的症状相较对照组得到明显缓解[50]

低FODMAP饮食

Low FODMAP diet

对71名IBD患者进行3个月低FODMAP饮食干预治疗患者症状在饮食干预后得到改善[51]

低FODMAP饮食

Low FODMAP diet

对89名IBD患者随机分配,进行6周低FODMAP饮食和正常饮食比较实验低FODMAP饮食组患者的症状缓解效果较对照组更好[52]

低FODMAP饮食

Low FODMAP diet

对52名IBD患者随机分配,进行4周低FODMAP饮食和正常饮食比较实验,观察血液中T细胞的表型低FODMAP饮食组患者的症状缓解效果好于对照组[53]

奥米伽-3、奥米伽-6、总多不饱和脂肪

Omega-3, Omega-6, total

polyunsaturated fat

奥米伽-3、奥米伽-6、总多不饱和脂肪运用在IBD预防和治疗上的荟萃分析对IBD的预防及治疗几乎没有影响[54]

奥米伽-3、奥米伽-6

Omega-3, Omega-6

研究奥米伽-3、奥米伽-6在体内的生物活性代谢物与IBD的炎症反应关系奥米伽-3、奥米伽-6相关代谢物水平与IBD相关[55]

维生素D

Vitamin D

回顾87名IBD患者体内维生素D水平,分析其与IBD的相关性超过70%的IBD患者表现为维生素D缺乏,在CD患者中维生素D水平与疾病活动状态相关[56]

维生素D

Vitamin D

对98名儿童IBD患者进行维生素D和安慰剂对比治疗,评估对IBD活动评分的影响补充维生素D对降低IBD活动评分有帮助[57]
表1  不同饮食模式对IBD患者影响的研究
图2  不同饮食模式对IBD的影响蓝色箭头表示呈下降趋势,红色箭头表示呈上升趋势。
图3  饮食通过调节肠道微生物群改善疾病的机制
1 SASSON A N, ANANTHAKRISHNAN A N, RAMAN M. Diet in treatment of inflammatory bowel diseases[J]. Clinical Gastroenterology and Hepatology, 2021, 19(3): 425-435. DOI: 10.1016/j.cgh.2019.11.054
doi: 10.1016/j.cgh.2019.11.054
2 FRANKE A, McGOVERN D P B, BARRETT J C, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci[J]. Nature Genetics, 2010, 42(12): 1118-1125. DOI: 10.1038/ng.717
doi: 10.1038/ng.717
3 PIOVANI D, DANESE S, PEYRIN-BIROULET L, et al. Environmental risk factors for inflammatory bowel diseases: an umbrella review of meta-analyses[J]. Gastroenterology, 2019, 157(3): 647-659. DOI: 10.1053/j.gastro.2019.04.016
doi: 10.1053/j.gastro.2019.04.016
4 WU R R, XIONG R, LI Y, et al. Gut microbiome, metabolome, host immunity associated with inflammatory bowel disease and intervention of fecal microbiota transplantation[J]. Journal of Autoimmunity, 2023, 141: 103062. DOI: 10.1016/j.jaut.2023.103062
doi: 10.1016/j.jaut.2023.103062
5 LEE M, CHANG E B. Inflammatory bowel diseases (IBD) and the microbiome: searching the crime scene for clues[J]. Gastroenterology, 2021, 160(2): 524-537. DOI: 10.1053/j.gastro.2020.09.056
doi: 10.1053/j.gastro.2020.09.056
6 EDWIN THANARAJAH S, DIFELICEANTONIO A G, ALBUS K, et al. Habitual daily intake of a sweet and fatty snack modulates reward processing in humans[J]. Cell Metabolism, 2023, 35(4): 571-584. DOI: 10.1016/j.cmet.2023.02.015
doi: 10.1016/j.cmet.2023.02.015
7 NEURATH M F. Current and emerging therapeutic targets for IBD[J]. Nature Reviews Gastroenterology & Hepatology, 2017, 14(5): 269-278. DOI: 10.1038/nrgastro.2016.208
doi: 10.1038/nrgastro.2016.208
8 COLOMBEL J F, SANDBORN W J, REINISCH W, et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease[J]. The New England Journal of Medicine, 2010, 362(15): 1383-1395. DOI: 10.1056/NEJMoa0904492
doi: 10.1056/NEJMoa0904492
9 MACALUSO F S, MAIDA M, VENTIMIGLIA M, et al. Effectiveness and safety of tofacitinib for the treatment of ulcerative colitis: a single-arm meta-analysis of observational studies[J]. Digestive and Liver Disease, 2022, 54(2): 183-191. DOI: 10.1016/j.dld.2021.04.018
doi: 10.1016/j.dld.2021.04.018
10 GEVERS D, KUGATHASAN S, DENSON L A, et al. The treatment-naive microbiome in new-onset Crohn’s disease[J]. Cell Host & Microbe, 2014, 15(3): 382-392. DOI: 10.1016/j.chom.2014.02.005
doi: 10.1016/j.chom.2014.02.005
11 HANEISHI Y, FURUYA Y, HASEGAWA M, et al. Infla-mmatory bowel diseases and gut microbiota[J]. International Journal of Molecular Sciences, 2023, 24(4): 3817. DOI: 10.3390/ijms24043817
doi: 10.3390/ijms24043817
12 ROY S, DHANESHWAR S. Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: current perspectives[J]. World Journal of Gastroenterology, 2023, 29(14): 2078-2100. DOI: 10.3748/wjg.v29.i14.2078
doi: 10.3748/wjg.v29.i14.2078
13 GOLPOUR F, ABBASI-ALAEI M, BABAEI F, et al. Short chain fatty acids, a possible treatment option for autoimmune diseases[J]. Biomedicine & Pharmacotherapy, 2023, 163: 114763. DOI: 10.1016/j.biopha.2023.114763
doi: 10.1016/j.biopha.2023.114763
14 ZHOU C H, WANG Y, LI C, et al. Amelioration of colitis by a gut bacterial consortium producing anti-inflammatory secondary bile acids[J]. Microbiology Spectrum, 2023, 11(2): e0333022. DOI: 10.1128/spectrum.03330-22
doi: 10.1128/spectrum.03330-22
15 LAVELLE A, SOKOL H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease[J]. Nature Reviews Gastroenterology & Hepatology, 2020, 17(4): 223-237. DOI: 10.1038/s41575-019-0258-z
doi: 10.1038/s41575-019-0258-z
16 CHASSAING B, KOREN O, GOODRICH J K, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome[J]. Nature, 2015, 519(7541): 92-96. DOI: 10.1038/nature14232
doi: 10.1038/nature14232
17 BORRELLI O, CORDISCHI L, CIRULLI M, et al. Polymeric diet alone versus corticosteroids in the treatment of active pediatric Crohn’s disease: a randomized controlled open-label trial[J]. Clinical Gastroenterology and Hepatology, 2006, 4(6): 744-753. DOI: 10.1016/j.cgh.2006.03.010
doi: 10.1016/j.cgh.2006.03.010
18 ECKBURG P B, RELMAN D A. The role of microbes in Crohn’s disease[J]. Clinical Infectious Diseases, 2007, 44(2): 256-262. DOI: 10.1086/510385
doi: 10.1086/510385
19 OGURA Y, BONEN D K, INOHARA N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease[J]. Nature, 2001, 411(6837): 603-606. DOI: 10.1038/35079114
doi: 10.1038/35079114
20 HOFFMANN P, LAMERZ D, HILL P, et al. Gene polymor-phisms of NOD2, IL23R, PTPN2 and ATG16L1 in patients with Crohn’s disease: on the way to personalized medicine?[J]. Genes, 2021, 12(6): 866. DOI: 10.3390/genes12060866
doi: 10.3390/genes12060866
21 DUERR R H, TAYLOR K D, BRANT S R, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene[J]. Science, 2006, 314(5804): 1461-1463. DOI: 10.1126/science.1135245
doi: 10.1126/science.1135245
22 LOFTUS E V. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences[J]. Gastroenterology, 2004, 126(6): 1504-1517. DOI: 10.1053/j.gastro.2004.01.063
doi: 10.1053/j.gastro.2004.01.063
23 NG S C, SHI H Y, HAMIDI N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies[J]. Lancet, 2017, 390(10114): 2769-2778. DOI: 10.1016/S0140-6736(17)32448-0
doi: 10.1016/S0140-6736(17)32448-0
24 JANTCHOU P, MOROIS S, CLAVEL-CHAPELON F, et al. Animal protein intake and risk of inflammatory bowel disease: the E3N prospective study[J]. The American Journal of Gastroenterology, 2010, 105(10): 2195-2201. DOI: 10.1038/ajg.2010.192
doi: 10.1038/ajg.2010.192
25 JOWETT S L, SEAL C J, PEARCE M S, et al. Influence of dietary factors on the clinical course of ulcerative colitis: a prospective cohort study[J]. Gut, 2004, 53(10): 1479-1484. DOI: 10.1136/gut.2003.024828
doi: 10.1136/gut.2003.024828
26 NI J, WU G D, ALBENBERG L, et al. Gut microbiota and IBD: causation or correlation?[J]. Nature Reviews Gastroen-terology & Hepatology, 2017, 14(10): 573-584. DOI: 10.1038/nrgastro.2017.88
doi: 10.1038/nrgastro.2017.88
27 HAN Y H, XIAO H. Whole food-based approaches to modulating gut microbiota and associated diseases[J]. Annual Review of Food Science and Technology, 2020, 11: 119-143. DOI: 10.1146/annurev-food-111519-014337
doi: 10.1146/annurev-food-111519-014337
28 PARADA VENEGAS D, DE LA FUENTE M K, LANDSKRON G, et al. Corrigendum: short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases[J]. Frontiers in Immunology, 2019, 10: 1486. DOI: 10.3389/fimmu.2019.01486
doi: 10.3389/fimmu.2019.01486
29 NATIVIDAD J M M, VERDU E F. Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications[J]. Pharmacological Research, 2013, 69(1): 42-51. DOI: 10.1016/j.phrs.2012.10.007
doi: 10.1016/j.phrs.2012.10.007
30 ZHANG Y Z, LI Y Y. Inflammatory bowel disease: patho-genesis[J]. World Journal of Gastroenterology, 2014, 20(1): 91-99. DOI: 10.3748/wjg.v20.i1.91
doi: 10.3748/wjg.v20.i1.91
31 BOUDEAU J, GLASSER A L, MASSERET E, et al. Invasive ability of an Escherichia coli strain isolated from the ileal mucosa of a patient with Crohn’s disease[J]. Infection and Immunity, 1999, 67(9): 4499-4509. DOI: 10.1128/iai.67.9.4499-4509.1999
doi: 10.1128/iai.67.9.4499-4509.1999
32 SOKOL H, SEKSIK P, FURET J P, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota[J]. Infla-mmatory Bowel Diseases, 2009, 15(8): 1183-1189. DOI: 10.1002/ibd.20903
doi: 10.1002/ibd.20903
33 LEWIS J D, CHEN E Z, BALDASSANO R N, et al. Infla-mmation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn’s disease[J]. Cell Host & Microbe, 2017, 22(2): 247. DOI: 10.1016/j.chom.2017.07.011
doi: 10.1016/j.chom.2017.07.011
34 PARAMSOTHY S, PARAMSOTHY R, RUBIN D T, et al. Faecal microbiota transplantation for inflammatory bowel disease: a systematic review and meta-analysis[J]. Journal of Crohn’s & Colitis, 2017, 11(10): 1180-1199. DOI: 10.1093/ecco-jcc/jjx063
doi: 10.1093/ecco-jcc/jjx063
35 GHOLAM-MOSTAFAEI F S, AZIMIRAD M, NASERI K, et al. Intestinal microbiota changes pre- and post-fecal microbiota transplantation for treatment of recurrent Clos-tridioides difficile infection among Iranian patients with concurrent inflammatory bowel disease[J]. Frontiers in Micro-biology, 2023, 14: 1147945. DOI: 10.3389/fmicb.2023.1147945
doi: 10.3389/fmicb.2023.1147945
36 TYE H, YU C H, SIMMS L A, et al. NLRP1 restricts butyrate producing commensals to exacerbate inflammatory bowel disease[J]. Nature Communications, 2018, 9: 3728. DOI: 10.1038/s41467-018-06125-0
doi: 10.1038/s41467-018-06125-0
37 FRANZOSA E A, SIROTA-MADI A, AVILA-PACHECO J, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease[J]. Nature Microbiology, 2019, 4(2): 293-305. DOI: 10.1038/s41564-018-0306-4
doi: 10.1038/s41564-018-0306-4
38 HOU J K, ABRAHAM B, EL-SERAG H. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature[J]. The American Journal of Gastroenterology, 2011, 106(4): 563-573. DOI: 10.1038/ajg.2011.44
doi: 10.1038/ajg.2011.44
39 金永新,李铎.Omega-3指数的概念和应用[J].浙江大学学报(农业与生命科学版),2013,39(2):119-121. DOI:10.3785/j.issn.1008‐9209.2012.11.061
JIN Y X, LI D. Concept of omega-3 index and its application[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(2): 119-121. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008‐9209.2012.11.061
40 HERFARTH H H, MARTIN C F, SANDLER R S, et al. Prevalence of a gluten-free diet and improvement of clinical symptoms in patients with inflammatory bowel diseases[J]. Inflammatory Bowel Diseases, 2014, 20(7): 1194-1197. DOI: 10.1097/MIB.0000000000000077
doi: 10.1097/MIB.0000000000000077
41 RACINE A, CARBONNEL F, CHAN S S M, et al. Dietary patterns and risk of inflammatory bowel disease in Europe: results from the EPIC study[J]. Inflammatory Bowel Diseases, 2016, 22(2): 345-354. DOI: 10.1097/MIB.0000000000000638
doi: 10.1097/MIB.0000000000000638
42 HOU Y, WANG S F, ZHOU K, et al. Comparison and recommendation of dietary patterns based on nutrients for Eastern and Western patients with inflammatory bowel disease[J]. Frontiers in Nutrition, 2023, 9: 1066252. DOI: 10.3389/fnut.2022.1066252
doi: 10.3389/fnut.2022.1066252
43 SIGALL-BONEH R, PFEFFER-GIK T, SEGAL I, et al. Partial enteral nutrition with a Crohn’s disease exclusion diet is effective for induction of remission in children and young adults with Crohn’s disease[J]. Inflammatory Bowel Diseases, 2014, 20(8): 1353-1360. DOI: 10.1097/MIB.0000000000000110
doi: 10.1097/MIB.0000000000000110
44 SZCZUBEŁEK M, POMORSKA K, KORÓLCZYK-KOWALCZYK M, et al. Effectiveness of Crohn’s disease exclusion diet for induction of remission in Crohn’s disease adult patients[J]. Nutrients, 2021, 13(11): 4112. DOI: 10.3390/nu13114112
doi: 10.3390/nu13114112
45 BONEH R S, SARBAGILI SHABAT C, YANAI H, et al. Dietary therapy with the Crohn’s disease exclusion diet is a successful strategy for induction of remission in children and adults failing biological therapy[J]. Journal of Crohn’s & Colitis, 2017, 11(10): 1205-1212. DOI: 10.1093/ecco-jcc/jjx071
doi: 10.1093/ecco-jcc/jjx071
46 OBIH C, WAHBEH G, LEE D, et al. Specific carbohydrate diet for pediatric inflammatory bowel disease in clinical practice within an academic IBD center[J]. Nutrition, 2016, 32(4): 418-425. DOI: 10.1016/j.nut.2015.08.025
doi: 10.1016/j.nut.2015.08.025
47 COHEN S A, GOLD B D, OLIVA S, et al. Clinical and mucosal improvement with specific carbohydrate diet in pediatric Crohn disease[J]. Journal of Pediatric Gastroenter-ology and Nutrition, 2014, 59(4): 516-521. DOI: 10.1097/MPG.0000000000000449
doi: 10.1097/MPG.0000000000000449
48 SUSKIND D L, COHEN S A, BRITTNACHER M J, et al. Clinical and fecal microbial changes with diet therapy in active inflammatory bowel disease[J]. Journal of Clinical Gastroenterology, 2018, 52(2): 155-163. DOI: 10.1097/MCG.0000000000000772
doi: 10.1097/MCG.0000000000000772
49 MATSUOKA K, UEMURA Y, KANAI T, et al. Efficacy of Bifidobacterium breve fermented milk in maintaining remission of ulcerative colitis[J]. Digestive Diseases and Sciences, 2018, 63(7): 1910-1919. DOI: 10.1007/s10620-018-4946-2
doi: 10.1007/s10620-018-4946-2
50 SCAIOLI E, SARTINI A, BELLANOVA M, et al. Eicosa-pentaenoic acid reduces fecal levels of calprotectin and prevents relapse in patients with ulcerative colitis[J]. Clinical Gastroenterology and Hepatology, 2018, 16(8): 1268-1275. DOI: 10.1016/j.cgh.2018.01.036
doi: 10.1016/j.cgh.2018.01.036
51 TESTA A, IMPERATORE N, RISPO A, et al. Beyond irritable bowel syndrome: the efficacy of the low FODMAP diet for improving symptoms in inflammatory bowel diseases and celiac disease[J]. Digestive Diseases, 2018, 36(4): 271-280. DOI: 10.1159/000489487
doi: 10.1159/000489487
52 PEDERSEN N, ANKERSEN D V, FELDING M, et al. Low-FODMAP diet reduces irritable bowel symptoms in patients with inflammatory bowel disease[J]. World Journal of Gastro-enterology, 2017, 23(18): 3356-3366. DOI: 10.3748/wjg.v23.i18.3356
doi: 10.3748/wjg.v23.i18.3356
53 COX S R, LINDSAY J O, FROMENTIN S, et al. Effects of low FODMAP diet on symptoms, fecal microbiome, and markers of inflammation in patients with quiescent infla-mmatory bowel disease in a randomized trial[J]. Gastroenter-ology, 2020, 158(1): 176-188. DOI: 10.1053/j.gastro.2019.09.024
doi: 10.1053/j.gastro.2019.09.024
54 AJABNOOR S M, THORPE G, ABDELHAMID A, et al. Long-term effects of increasing omega-3, omega-6 and total polyunsaturated fats on inflammatory bowel disease and markers of inflammation: a systematic review and meta-analysis of randomized controlled trials[J]. European Journal of Nutrition, 2021, 60(5): 2293-2316. DOI: 10.1007/s00394-020-02413-y
doi: 10.1007/s00394-020-02413-y
55 DIAB J, AL-MAHDI R, GOUVEIA-FIGUEIRA S, et al. A quantitative analysis of colonic mucosal oxylipins and endo-cannabinoids in treatment-Naive and deep remission ulcerative colitis patients and the potential link with cytokine gene expression[J]. Inflammatory Bowel Diseases, 2019, 25(3): 490-497. DOI: 10.1093/ibd/izy349
doi: 10.1093/ibd/izy349
56 KO K H, KIM Y S, LEE B K, et al. Vitamin D deficiency is associated with disease activity in patients with Crohn’s disease[J]. Intestinal Research, 2019, 17(1): 70-77. DOI: 10.5217/ir.2018.00022
doi: 10.5217/ir.2018.00022
57 AMROUSY D EL, ASHRY H EL, HODEIB H, et al. Vitamin D in children with inflammatory bowel disease: a randomized controlled clinical trial[J]. Journal of Clinical Gastroenterology, 2021, 55(9): 815-820. DOI: 10.1097/MCG.0000000000001443
doi: 10.1097/MCG.0000000000001443
58 YAN J, WANG L, GU Y, et al. Dietary patterns and gut microbiota changes in inflammatory bowel disease: current insights and future challenges[J]. Nutrients, 2022, 14(19): 4003. DOI: 10.3390/nu14194003
doi: 10.3390/nu14194003
59 JUNG M, TRIEBEL S, ANKE T, et al. Influence of apple polyphenols on inflammatory gene expression[J]. Molecular Nutrition & Food Research, 2009, 53(10): 1263-1280. DOI: 10.1002/mnfr.200800575
doi: 10.1002/mnfr.200800575
60 GENTILE C, PERRONE A, ATTANZIO A, et al. Sicilian pistachio (Pistacia vera L.) nut inhibits expression and release of inflammatory mediators and reverts the increase of para-cellular permeability in IL-1β-exposed human intestinal epithelial cells[J]. European Journal of Nutrition, 2015, 54(5): 811-821. DOI: 10.1007/s00394-014-0760-6
doi: 10.1007/s00394-014-0760-6
61 TULLIO V, GASPERI V, CATANI M V, et al. The impact of whole grain intake on gastrointestinal tumors: a focus on colorectal, gastric, and esophageal cancers[J]. Nutrients, 2020, 13(1): 81. DOI: 10.3390/nu13010081
doi: 10.3390/nu13010081
62 STAUDACHER H M, GIBSON P R. Traditional dietary advice, low FODMAP diet, or gluten-free diet for IBS: growing understanding but uncertainties remain[J]. Clinical Gastroenterology and Hepatology, 2023, 21(4): 1119-1120. DOI: 10.1016/j.cgh.2022.05.051
doi: 10.1016/j.cgh.2022.05.051
63 ZHAN Y L, ZHAN Y A, DAI S X. Is a low FODMAP diet beneficial for patients with inflammatory bowel disease? A meta-analysis and systematic review[J]. Clinical Nutrition, 2018, 37(1): 123-129. DOI: 10.1016/j.clnu.2017.05.019
doi: 10.1016/j.clnu.2017.05.019
64 REZNIKOV E A, SUSKIND D L. Current nutritional therapies in inflammatory bowel disease: improving clinical remission rates and sustainability of long-term dietary therapies[J]. Nutrients, 2023, 15(3): 668. DOI: 10.3390/nu15030668
doi: 10.3390/nu15030668
65 SUSKIND D L, LEE D, KIM Y M, et al. The specific carbohydrate diet and diet modification as induction therapy for pediatric Crohn’s disease: a randomized diet controlled trial[J]. Nutrients, 2020, 12(12): 3749. DOI: 10.3390/nu12123749
doi: 10.3390/nu12123749
66 DESAI M S, SEEKATZ A M, KOROPATKIN N M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility[J]. Cell, 2016, 167(5): 1339-1353. DOI: 10.1016/j.cell.2016.10.043
doi: 10.1016/j.cell.2016.10.043
67 HILDEBRANDT M A, HOFFMANN C, SHERRILL-MIX S A, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity[J]. Gastro-enterology, 2009, 137(5): 1716-1724. DOI: 10.1053/j.gastro.2009.08.042
doi: 10.1053/j.gastro.2009.08.042
68 LI X F, GUO J, JI K L, et al. Bamboo shoot fiber prevents obesity in mice by modulating the gut microbiota[J]. Scientific Reports, 2016, 6: 32953. DOI: 10.1038/srep32953
doi: 10.1038/srep32953
69 DEVKOTA S, WANG Y W, MUSCH M W, et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10 -/- mice[J]. Nature, 2012, 487(7405): 104-108. DOI: 10.1038/nature11225
doi: 10.1038/nature11225
70 CHEN Y W, MAI Q D, CHEN Z X, et al. Dietary palmitoleic acid reprograms gut microbiota and improves biological therapy against colitis[J]. Gut Microbes, 2023, 15(1): 2211501. DOI: 10.1080/19490976.2023.2211501
doi: 10.1080/19490976.2023.2211501
71 WEISSTAUB G, ARAYA M. Acute malnutrition in Latin America: the challenge of ending avoidable deaths[J]. Journal of Pediatric Gastroenterology and Nutrition, 2008, 47(): S10-S14. DOI: 10.1097/MPG.0b013e3181818e78
doi: 10.1097/MPG.0b013e3181818e78
72 WU L T, TANG Z R, CHEN H Y, et al. Mutual interaction between gut microbiota and protein/amino acid metabolism for host mucosal immunity and health[J]. Animal Nutrition, 2021, 7(1): 11-16. DOI: 10.1016/j.aninu.2020.11.003
doi: 10.1016/j.aninu.2020.11.003
73 BUTTEIGER D N, HIBBERD A A, McGRAW N J, et al. Soy protein compared with milk protein in a Western diet increases gut microbial diversity and reduces serum lipids in Golden Syrian hamsters[J]. The Journal of Nutrition, 2016, 146(4): 697-705. DOI: 10.3945/jn.115.224196
doi: 10.3945/jn.115.224196
74 TAN C, WANG M Y, KONG Y W, et al. Anti-inflammatory and intestinal microbiota modulation properties of high hydrostatic pressure treated cyanidin-3-glucoside and blueberry pectin complexes on dextran sodium sulfate-induced ulcerative colitis mice[J]. Food & Function, 2022, 13(8): 4384-4398. DOI: 10.1039/d1fo03376j
doi: 10.1039/d1fo03376j
75 SAMSAMI-KOR M, DARYANI N E, ASL P R, et al. Anti-inflammatory effects of resveratrol in patients with ulcerative colitis: a randomized, double-blind, placebo-controlled pilot study[J]. Archives of Medical Research, 2015, 46(4): 280-285. DOI: 10.1016/j.arcmed.2015.05.005
doi: 10.1016/j.arcmed.2015.05.005
76 YU L C H. Microbiota dysbiosis and barrier dysfunction in inflammatory bowel disease and colorectal cancers: exploring a common ground hypothesis[J]. Journal of Biomedical Science, 2018, 25(1): 79. DOI: 10.1186/s12929-018-0483-8
doi: 10.1186/s12929-018-0483-8
77 JAMIESON P E, CARBONERO F, STEVENS J F. Dietary (poly)phenols mitigate inflammatory bowel disease: therapeutic targets, mechanisms of action, and clinical observations[J]. Current Research in Food Science, 2023, 6: 100521. DOI: 10.1016/j.crfs.2023.100521
doi: 10.1016/j.crfs.2023.100521
78 HUANG T T, CHE Q J, CHEN X L, et al. Apple polyphenols improve intestinal antioxidant capacity and barrier function by activating the Nrf2/Keap1 signaling pathway in a pig model[J]. Journal of Agricultural and Food Chemistry, 2022, 70(24): 7576-7585. DOI: 10.1021/acs.jafc.2c02495
doi: 10.1021/acs.jafc.2c02495
79 WU Z H, HUANG S M, LI T T, et al. Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis[J]. Microbiome, 2021, 9(1): 184. DOI: 10.1186/s40168-021-01115-9
doi: 10.1186/s40168-021-01115-9
80 LIU N, FENG G, ZHANG X Y, et al. The functional role of lactoferrin in intestine mucosal immune system and infla-mmatory bowel disease[J]. Frontiers in Nutrition, 2021, 8: 759507. DOI: 10.3389/fnut.2021.759507
doi: 10.3389/fnut.2021.759507
81 WASTYK H C, FRAGIADAKIS G K, PERELMAN D, et al. Gut-microbiota-targeted diets modulate human immune status[J]. Cell, 2021, 184(16): 4137-4153. DOI: 10.1016/j.cell.2021.06.019
doi: 10.1016/j.cell.2021.06.019
82 HABENS F, SRINIVASAN N, OAKLEY F, et al. Novel sulfasalazine analogues with enhanced NF-κB inhibitory and apoptosis promoting activity[J]. Apoptosis, 2005, 10(3): 481-491. DOI: 10.1007/s10495-005-1877-0
doi: 10.1007/s10495-005-1877-0
83 WILLOT S, NOBLE A, DESLANDRES C. Methotrexate in the treatment of inflammatory bowel disease: an 8-year retrospective study in a Canadian pediatric IBD center[J]. Inflammatory Bowel Diseases, 2011, 17(12): 2521-2526. DOI: 10.1002/ibd.21653
doi: 10.1002/ibd.21653
[1] 胡俐泉,屠琳玥,赵悦伶,谢亨通,徐安安,徐平,周继红,王岳飞. 西湖龙井茶对高脂高果糖饮食小鼠肠道菌群的调节作用[J]. 浙江大学学报(农业与生命科学版), 2024, 50(3): 481-494.
[2] 赵悦伶,丁健,何佳,孔德栋,徐平,王岳飞. 表没食子儿茶素没食子酸酯对葡聚糖硫酸钠诱导小鼠炎症性肠病的保护作用[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 626-634.