综述 |
|
|
|
|
饮食通过影响肠道微生物群改善炎症性肠病的研究进展 |
陈亿豪1(),潘海波1,2,吴冬梅1,叶兴乾1,陈士国1,2,3,4() |
1.浙江大学生物系统工程与食品科学学院/智能食品加工技术与装备国家地方联合工程实验室/浙江省农产品加工技术研究重点实验室/南方果蔬保鲜技术集成科研基地/浙江省健康食品制造与品质控制国际合作基地,浙江 杭州 310058 2.浙江大学长三角智慧绿洲创新中心,浙江 嘉兴 314102 3.浙江大学馥莉食品研究院,浙江 杭州 310058 4.浙江大学宁波研究院,浙江 宁波 315100 |
|
Research progress on diet influencing gut microbiota to improve inflammatory bowel disease |
Yihao CHEN1(),Haibo PAN1,2,Dongmei WU1,Xingqian YE1,Shiguo CHEN1,2,3,4() |
1.College of Biosystems Engineering and Food Science/National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment/Zhejiang Key Laboratory for Agro-Food Processing/Integrated Research Base of Southern Fruit and Vegetable Preservation Technology/Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, Zhejiang, China 2.Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, Zhejiang, China 3.Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China 4.Ningbo Research Institute, Zhejiang University, Ningbo 315100, Zhejiang, China |
引用本文:
陈亿豪,潘海波,吴冬梅,叶兴乾,陈士国. 饮食通过影响肠道微生物群改善炎症性肠病的研究进展[J]. 浙江大学学报(农业与生命科学版), 2024, 50(5): 703-714.
Yihao CHEN,Haibo PAN,Dongmei WU,Xingqian YE,Shiguo CHEN. Research progress on diet influencing gut microbiota to improve inflammatory bowel disease. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(5): 703-714.
链接本文:
https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.08.181
或
https://www.zjujournals.com/agr/CN/Y2024/V50/I5/703
|
1 |
SASSON A N, ANANTHAKRISHNAN A N, RAMAN M. Diet in treatment of inflammatory bowel diseases[J]. Clinical Gastroenterology and Hepatology, 2021, 19(3): 425-435. DOI: 10.1016/j.cgh.2019.11.054
doi: 10.1016/j.cgh.2019.11.054
|
2 |
FRANKE A, McGOVERN D P B, BARRETT J C, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci[J]. Nature Genetics, 2010, 42(12): 1118-1125. DOI: 10.1038/ng.717
doi: 10.1038/ng.717
|
3 |
PIOVANI D, DANESE S, PEYRIN-BIROULET L, et al. Environmental risk factors for inflammatory bowel diseases: an umbrella review of meta-analyses[J]. Gastroenterology, 2019, 157(3): 647-659. DOI: 10.1053/j.gastro.2019.04.016
doi: 10.1053/j.gastro.2019.04.016
|
4 |
WU R R, XIONG R, LI Y, et al. Gut microbiome, metabolome, host immunity associated with inflammatory bowel disease and intervention of fecal microbiota transplantation[J]. Journal of Autoimmunity, 2023, 141: 103062. DOI: 10.1016/j.jaut.2023.103062
doi: 10.1016/j.jaut.2023.103062
|
5 |
LEE M, CHANG E B. Inflammatory bowel diseases (IBD) and the microbiome: searching the crime scene for clues[J]. Gastroenterology, 2021, 160(2): 524-537. DOI: 10.1053/j.gastro.2020.09.056
doi: 10.1053/j.gastro.2020.09.056
|
6 |
EDWIN THANARAJAH S, DIFELICEANTONIO A G, ALBUS K, et al. Habitual daily intake of a sweet and fatty snack modulates reward processing in humans[J]. Cell Metabolism, 2023, 35(4): 571-584. DOI: 10.1016/j.cmet.2023.02.015
doi: 10.1016/j.cmet.2023.02.015
|
7 |
NEURATH M F. Current and emerging therapeutic targets for IBD[J]. Nature Reviews Gastroenterology & Hepatology, 2017, 14(5): 269-278. DOI: 10.1038/nrgastro.2016.208
doi: 10.1038/nrgastro.2016.208
|
8 |
COLOMBEL J F, SANDBORN W J, REINISCH W, et al. Infliximab, azathioprine, or combination therapy for Crohn’s disease[J]. The New England Journal of Medicine, 2010, 362(15): 1383-1395. DOI: 10.1056/NEJMoa0904492
doi: 10.1056/NEJMoa0904492
|
9 |
MACALUSO F S, MAIDA M, VENTIMIGLIA M, et al. Effectiveness and safety of tofacitinib for the treatment of ulcerative colitis: a single-arm meta-analysis of observational studies[J]. Digestive and Liver Disease, 2022, 54(2): 183-191. DOI: 10.1016/j.dld.2021.04.018
doi: 10.1016/j.dld.2021.04.018
|
10 |
GEVERS D, KUGATHASAN S, DENSON L A, et al. The treatment-naive microbiome in new-onset Crohn’s disease[J]. Cell Host & Microbe, 2014, 15(3): 382-392. DOI: 10.1016/j.chom.2014.02.005
doi: 10.1016/j.chom.2014.02.005
|
11 |
HANEISHI Y, FURUYA Y, HASEGAWA M, et al. Infla-mmatory bowel diseases and gut microbiota[J]. International Journal of Molecular Sciences, 2023, 24(4): 3817. DOI: 10.3390/ijms24043817
doi: 10.3390/ijms24043817
|
12 |
ROY S, DHANESHWAR S. Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: current perspectives[J]. World Journal of Gastroenterology, 2023, 29(14): 2078-2100. DOI: 10.3748/wjg.v29.i14.2078
doi: 10.3748/wjg.v29.i14.2078
|
13 |
GOLPOUR F, ABBASI-ALAEI M, BABAEI F, et al. Short chain fatty acids, a possible treatment option for autoimmune diseases[J]. Biomedicine & Pharmacotherapy, 2023, 163: 114763. DOI: 10.1016/j.biopha.2023.114763
doi: 10.1016/j.biopha.2023.114763
|
14 |
ZHOU C H, WANG Y, LI C, et al. Amelioration of colitis by a gut bacterial consortium producing anti-inflammatory secondary bile acids[J]. Microbiology Spectrum, 2023, 11(2): e0333022. DOI: 10.1128/spectrum.03330-22
doi: 10.1128/spectrum.03330-22
|
15 |
LAVELLE A, SOKOL H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease[J]. Nature Reviews Gastroenterology & Hepatology, 2020, 17(4): 223-237. DOI: 10.1038/s41575-019-0258-z
doi: 10.1038/s41575-019-0258-z
|
16 |
CHASSAING B, KOREN O, GOODRICH J K, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome[J]. Nature, 2015, 519(7541): 92-96. DOI: 10.1038/nature14232
doi: 10.1038/nature14232
|
17 |
BORRELLI O, CORDISCHI L, CIRULLI M, et al. Polymeric diet alone versus corticosteroids in the treatment of active pediatric Crohn’s disease: a randomized controlled open-label trial[J]. Clinical Gastroenterology and Hepatology, 2006, 4(6): 744-753. DOI: 10.1016/j.cgh.2006.03.010
doi: 10.1016/j.cgh.2006.03.010
|
18 |
ECKBURG P B, RELMAN D A. The role of microbes in Crohn’s disease[J]. Clinical Infectious Diseases, 2007, 44(2): 256-262. DOI: 10.1086/510385
doi: 10.1086/510385
|
19 |
OGURA Y, BONEN D K, INOHARA N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease[J]. Nature, 2001, 411(6837): 603-606. DOI: 10.1038/35079114
doi: 10.1038/35079114
|
20 |
HOFFMANN P, LAMERZ D, HILL P, et al. Gene polymor-phisms of NOD2, IL23R, PTPN2 and ATG16L1 in patients with Crohn’s disease: on the way to personalized medicine?[J]. Genes, 2021, 12(6): 866. DOI: 10.3390/genes12060866
doi: 10.3390/genes12060866
|
21 |
DUERR R H, TAYLOR K D, BRANT S R, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene[J]. Science, 2006, 314(5804): 1461-1463. DOI: 10.1126/science.1135245
doi: 10.1126/science.1135245
|
22 |
LOFTUS E V. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences[J]. Gastroenterology, 2004, 126(6): 1504-1517. DOI: 10.1053/j.gastro.2004.01.063
doi: 10.1053/j.gastro.2004.01.063
|
23 |
NG S C, SHI H Y, HAMIDI N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies[J]. Lancet, 2017, 390(10114): 2769-2778. DOI: 10.1016/S0140-6736(17)32448-0
doi: 10.1016/S0140-6736(17)32448-0
|
24 |
JANTCHOU P, MOROIS S, CLAVEL-CHAPELON F, et al. Animal protein intake and risk of inflammatory bowel disease: the E3N prospective study[J]. The American Journal of Gastroenterology, 2010, 105(10): 2195-2201. DOI: 10.1038/ajg.2010.192
doi: 10.1038/ajg.2010.192
|
25 |
JOWETT S L, SEAL C J, PEARCE M S, et al. Influence of dietary factors on the clinical course of ulcerative colitis: a prospective cohort study[J]. Gut, 2004, 53(10): 1479-1484. DOI: 10.1136/gut.2003.024828
doi: 10.1136/gut.2003.024828
|
26 |
NI J, WU G D, ALBENBERG L, et al. Gut microbiota and IBD: causation or correlation?[J]. Nature Reviews Gastroen-terology & Hepatology, 2017, 14(10): 573-584. DOI: 10.1038/nrgastro.2017.88
doi: 10.1038/nrgastro.2017.88
|
27 |
HAN Y H, XIAO H. Whole food-based approaches to modulating gut microbiota and associated diseases[J]. Annual Review of Food Science and Technology, 2020, 11: 119-143. DOI: 10.1146/annurev-food-111519-014337
doi: 10.1146/annurev-food-111519-014337
|
28 |
PARADA VENEGAS D, DE LA FUENTE M K, LANDSKRON G, et al. Corrigendum: short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases[J]. Frontiers in Immunology, 2019, 10: 1486. DOI: 10.3389/fimmu.2019.01486
doi: 10.3389/fimmu.2019.01486
|
29 |
NATIVIDAD J M M, VERDU E F. Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications[J]. Pharmacological Research, 2013, 69(1): 42-51. DOI: 10.1016/j.phrs.2012.10.007
doi: 10.1016/j.phrs.2012.10.007
|
30 |
ZHANG Y Z, LI Y Y. Inflammatory bowel disease: patho-genesis[J]. World Journal of Gastroenterology, 2014, 20(1): 91-99. DOI: 10.3748/wjg.v20.i1.91
doi: 10.3748/wjg.v20.i1.91
|
31 |
BOUDEAU J, GLASSER A L, MASSERET E, et al. Invasive ability of an Escherichia coli strain isolated from the ileal mucosa of a patient with Crohn’s disease[J]. Infection and Immunity, 1999, 67(9): 4499-4509. DOI: 10.1128/iai.67.9.4499-4509.1999
doi: 10.1128/iai.67.9.4499-4509.1999
|
32 |
SOKOL H, SEKSIK P, FURET J P, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota[J]. Infla-mmatory Bowel Diseases, 2009, 15(8): 1183-1189. DOI: 10.1002/ibd.20903
doi: 10.1002/ibd.20903
|
33 |
LEWIS J D, CHEN E Z, BALDASSANO R N, et al. Infla-mmation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn’s disease[J]. Cell Host & Microbe, 2017, 22(2): 247. DOI: 10.1016/j.chom.2017.07.011
doi: 10.1016/j.chom.2017.07.011
|
34 |
PARAMSOTHY S, PARAMSOTHY R, RUBIN D T, et al. Faecal microbiota transplantation for inflammatory bowel disease: a systematic review and meta-analysis[J]. Journal of Crohn’s & Colitis, 2017, 11(10): 1180-1199. DOI: 10.1093/ecco-jcc/jjx063
doi: 10.1093/ecco-jcc/jjx063
|
35 |
GHOLAM-MOSTAFAEI F S, AZIMIRAD M, NASERI K, et al. Intestinal microbiota changes pre- and post-fecal microbiota transplantation for treatment of recurrent Clos-tridioides difficile infection among Iranian patients with concurrent inflammatory bowel disease[J]. Frontiers in Micro-biology, 2023, 14: 1147945. DOI: 10.3389/fmicb.2023.1147945
doi: 10.3389/fmicb.2023.1147945
|
36 |
TYE H, YU C H, SIMMS L A, et al. NLRP1 restricts butyrate producing commensals to exacerbate inflammatory bowel disease[J]. Nature Communications, 2018, 9: 3728. DOI: 10.1038/s41467-018-06125-0
doi: 10.1038/s41467-018-06125-0
|
37 |
FRANZOSA E A, SIROTA-MADI A, AVILA-PACHECO J, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease[J]. Nature Microbiology, 2019, 4(2): 293-305. DOI: 10.1038/s41564-018-0306-4
doi: 10.1038/s41564-018-0306-4
|
38 |
HOU J K, ABRAHAM B, EL-SERAG H. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature[J]. The American Journal of Gastroenterology, 2011, 106(4): 563-573. DOI: 10.1038/ajg.2011.44
doi: 10.1038/ajg.2011.44
|
39 |
金永新,李铎.Omega-3指数的概念和应用[J].浙江大学学报(农业与生命科学版),2013,39(2):119-121. DOI:10.3785/j.issn.1008‐9209.2012.11.061 JIN Y X, LI D. Concept of omega-3 index and its application[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(2): 119-121. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008‐9209.2012.11.061
|
40 |
HERFARTH H H, MARTIN C F, SANDLER R S, et al. Prevalence of a gluten-free diet and improvement of clinical symptoms in patients with inflammatory bowel diseases[J]. Inflammatory Bowel Diseases, 2014, 20(7): 1194-1197. DOI: 10.1097/MIB.0000000000000077
doi: 10.1097/MIB.0000000000000077
|
41 |
RACINE A, CARBONNEL F, CHAN S S M, et al. Dietary patterns and risk of inflammatory bowel disease in Europe: results from the EPIC study[J]. Inflammatory Bowel Diseases, 2016, 22(2): 345-354. DOI: 10.1097/MIB.0000000000000638
doi: 10.1097/MIB.0000000000000638
|
42 |
HOU Y, WANG S F, ZHOU K, et al. Comparison and recommendation of dietary patterns based on nutrients for Eastern and Western patients with inflammatory bowel disease[J]. Frontiers in Nutrition, 2023, 9: 1066252. DOI: 10.3389/fnut.2022.1066252
doi: 10.3389/fnut.2022.1066252
|
43 |
SIGALL-BONEH R, PFEFFER-GIK T, SEGAL I, et al. Partial enteral nutrition with a Crohn’s disease exclusion diet is effective for induction of remission in children and young adults with Crohn’s disease[J]. Inflammatory Bowel Diseases, 2014, 20(8): 1353-1360. DOI: 10.1097/MIB.0000000000000110
doi: 10.1097/MIB.0000000000000110
|
44 |
SZCZUBEŁEK M, POMORSKA K, KORÓLCZYK-KOWALCZYK M, et al. Effectiveness of Crohn’s disease exclusion diet for induction of remission in Crohn’s disease adult patients[J]. Nutrients, 2021, 13(11): 4112. DOI: 10.3390/nu13114112
doi: 10.3390/nu13114112
|
45 |
BONEH R S, SARBAGILI SHABAT C, YANAI H, et al. Dietary therapy with the Crohn’s disease exclusion diet is a successful strategy for induction of remission in children and adults failing biological therapy[J]. Journal of Crohn’s & Colitis, 2017, 11(10): 1205-1212. DOI: 10.1093/ecco-jcc/jjx071
doi: 10.1093/ecco-jcc/jjx071
|
46 |
OBIH C, WAHBEH G, LEE D, et al. Specific carbohydrate diet for pediatric inflammatory bowel disease in clinical practice within an academic IBD center[J]. Nutrition, 2016, 32(4): 418-425. DOI: 10.1016/j.nut.2015.08.025
doi: 10.1016/j.nut.2015.08.025
|
47 |
COHEN S A, GOLD B D, OLIVA S, et al. Clinical and mucosal improvement with specific carbohydrate diet in pediatric Crohn disease[J]. Journal of Pediatric Gastroenter-ology and Nutrition, 2014, 59(4): 516-521. DOI: 10.1097/MPG.0000000000000449
doi: 10.1097/MPG.0000000000000449
|
48 |
SUSKIND D L, COHEN S A, BRITTNACHER M J, et al. Clinical and fecal microbial changes with diet therapy in active inflammatory bowel disease[J]. Journal of Clinical Gastroenterology, 2018, 52(2): 155-163. DOI: 10.1097/MCG.0000000000000772
doi: 10.1097/MCG.0000000000000772
|
49 |
MATSUOKA K, UEMURA Y, KANAI T, et al. Efficacy of Bifidobacterium breve fermented milk in maintaining remission of ulcerative colitis[J]. Digestive Diseases and Sciences, 2018, 63(7): 1910-1919. DOI: 10.1007/s10620-018-4946-2
doi: 10.1007/s10620-018-4946-2
|
50 |
SCAIOLI E, SARTINI A, BELLANOVA M, et al. Eicosa-pentaenoic acid reduces fecal levels of calprotectin and prevents relapse in patients with ulcerative colitis[J]. Clinical Gastroenterology and Hepatology, 2018, 16(8): 1268-1275. DOI: 10.1016/j.cgh.2018.01.036
doi: 10.1016/j.cgh.2018.01.036
|
51 |
TESTA A, IMPERATORE N, RISPO A, et al. Beyond irritable bowel syndrome: the efficacy of the low FODMAP diet for improving symptoms in inflammatory bowel diseases and celiac disease[J]. Digestive Diseases, 2018, 36(4): 271-280. DOI: 10.1159/000489487
doi: 10.1159/000489487
|
52 |
PEDERSEN N, ANKERSEN D V, FELDING M, et al. Low-FODMAP diet reduces irritable bowel symptoms in patients with inflammatory bowel disease[J]. World Journal of Gastro-enterology, 2017, 23(18): 3356-3366. DOI: 10.3748/wjg.v23.i18.3356
doi: 10.3748/wjg.v23.i18.3356
|
53 |
COX S R, LINDSAY J O, FROMENTIN S, et al. Effects of low FODMAP diet on symptoms, fecal microbiome, and markers of inflammation in patients with quiescent infla-mmatory bowel disease in a randomized trial[J]. Gastroenter-ology, 2020, 158(1): 176-188. DOI: 10.1053/j.gastro.2019.09.024
doi: 10.1053/j.gastro.2019.09.024
|
54 |
AJABNOOR S M, THORPE G, ABDELHAMID A, et al. Long-term effects of increasing omega-3, omega-6 and total polyunsaturated fats on inflammatory bowel disease and markers of inflammation: a systematic review and meta-analysis of randomized controlled trials[J]. European Journal of Nutrition, 2021, 60(5): 2293-2316. DOI: 10.1007/s00394-020-02413-y
doi: 10.1007/s00394-020-02413-y
|
55 |
DIAB J, AL-MAHDI R, GOUVEIA-FIGUEIRA S, et al. A quantitative analysis of colonic mucosal oxylipins and endo-cannabinoids in treatment-Naive and deep remission ulcerative colitis patients and the potential link with cytokine gene expression[J]. Inflammatory Bowel Diseases, 2019, 25(3): 490-497. DOI: 10.1093/ibd/izy349
doi: 10.1093/ibd/izy349
|
56 |
KO K H, KIM Y S, LEE B K, et al. Vitamin D deficiency is associated with disease activity in patients with Crohn’s disease[J]. Intestinal Research, 2019, 17(1): 70-77. DOI: 10.5217/ir.2018.00022
doi: 10.5217/ir.2018.00022
|
57 |
AMROUSY D EL, ASHRY H EL, HODEIB H, et al. Vitamin D in children with inflammatory bowel disease: a randomized controlled clinical trial[J]. Journal of Clinical Gastroenterology, 2021, 55(9): 815-820. DOI: 10.1097/MCG.0000000000001443
doi: 10.1097/MCG.0000000000001443
|
58 |
YAN J, WANG L, GU Y, et al. Dietary patterns and gut microbiota changes in inflammatory bowel disease: current insights and future challenges[J]. Nutrients, 2022, 14(19): 4003. DOI: 10.3390/nu14194003
doi: 10.3390/nu14194003
|
59 |
JUNG M, TRIEBEL S, ANKE T, et al. Influence of apple polyphenols on inflammatory gene expression[J]. Molecular Nutrition & Food Research, 2009, 53(10): 1263-1280. DOI: 10.1002/mnfr.200800575
doi: 10.1002/mnfr.200800575
|
60 |
GENTILE C, PERRONE A, ATTANZIO A, et al. Sicilian pistachio (Pistacia vera L.) nut inhibits expression and release of inflammatory mediators and reverts the increase of para-cellular permeability in IL-1β-exposed human intestinal epithelial cells[J]. European Journal of Nutrition, 2015, 54(5): 811-821. DOI: 10.1007/s00394-014-0760-6
doi: 10.1007/s00394-014-0760-6
|
61 |
TULLIO V, GASPERI V, CATANI M V, et al. The impact of whole grain intake on gastrointestinal tumors: a focus on colorectal, gastric, and esophageal cancers[J]. Nutrients, 2020, 13(1): 81. DOI: 10.3390/nu13010081
doi: 10.3390/nu13010081
|
62 |
STAUDACHER H M, GIBSON P R. Traditional dietary advice, low FODMAP diet, or gluten-free diet for IBS: growing understanding but uncertainties remain[J]. Clinical Gastroenterology and Hepatology, 2023, 21(4): 1119-1120. DOI: 10.1016/j.cgh.2022.05.051
doi: 10.1016/j.cgh.2022.05.051
|
63 |
ZHAN Y L, ZHAN Y A, DAI S X. Is a low FODMAP diet beneficial for patients with inflammatory bowel disease? A meta-analysis and systematic review[J]. Clinical Nutrition, 2018, 37(1): 123-129. DOI: 10.1016/j.clnu.2017.05.019
doi: 10.1016/j.clnu.2017.05.019
|
64 |
REZNIKOV E A, SUSKIND D L. Current nutritional therapies in inflammatory bowel disease: improving clinical remission rates and sustainability of long-term dietary therapies[J]. Nutrients, 2023, 15(3): 668. DOI: 10.3390/nu15030668
doi: 10.3390/nu15030668
|
65 |
SUSKIND D L, LEE D, KIM Y M, et al. The specific carbohydrate diet and diet modification as induction therapy for pediatric Crohn’s disease: a randomized diet controlled trial[J]. Nutrients, 2020, 12(12): 3749. DOI: 10.3390/nu12123749
doi: 10.3390/nu12123749
|
66 |
DESAI M S, SEEKATZ A M, KOROPATKIN N M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility[J]. Cell, 2016, 167(5): 1339-1353. DOI: 10.1016/j.cell.2016.10.043
doi: 10.1016/j.cell.2016.10.043
|
67 |
HILDEBRANDT M A, HOFFMANN C, SHERRILL-MIX S A, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity[J]. Gastro-enterology, 2009, 137(5): 1716-1724. DOI: 10.1053/j.gastro.2009.08.042
doi: 10.1053/j.gastro.2009.08.042
|
68 |
LI X F, GUO J, JI K L, et al. Bamboo shoot fiber prevents obesity in mice by modulating the gut microbiota[J]. Scientific Reports, 2016, 6: 32953. DOI: 10.1038/srep32953
doi: 10.1038/srep32953
|
69 |
DEVKOTA S, WANG Y W, MUSCH M W, et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10 -/- mice[J]. Nature, 2012, 487(7405): 104-108. DOI: 10.1038/nature11225
doi: 10.1038/nature11225
|
70 |
CHEN Y W, MAI Q D, CHEN Z X, et al. Dietary palmitoleic acid reprograms gut microbiota and improves biological therapy against colitis[J]. Gut Microbes, 2023, 15(1): 2211501. DOI: 10.1080/19490976.2023.2211501
doi: 10.1080/19490976.2023.2211501
|
71 |
WEISSTAUB G, ARAYA M. Acute malnutrition in Latin America: the challenge of ending avoidable deaths[J]. Journal of Pediatric Gastroenterology and Nutrition, 2008, 47(): S10-S14. DOI: 10.1097/MPG.0b013e3181818e78
doi: 10.1097/MPG.0b013e3181818e78
|
72 |
WU L T, TANG Z R, CHEN H Y, et al. Mutual interaction between gut microbiota and protein/amino acid metabolism for host mucosal immunity and health[J]. Animal Nutrition, 2021, 7(1): 11-16. DOI: 10.1016/j.aninu.2020.11.003
doi: 10.1016/j.aninu.2020.11.003
|
73 |
BUTTEIGER D N, HIBBERD A A, McGRAW N J, et al. Soy protein compared with milk protein in a Western diet increases gut microbial diversity and reduces serum lipids in Golden Syrian hamsters[J]. The Journal of Nutrition, 2016, 146(4): 697-705. DOI: 10.3945/jn.115.224196
doi: 10.3945/jn.115.224196
|
74 |
TAN C, WANG M Y, KONG Y W, et al. Anti-inflammatory and intestinal microbiota modulation properties of high hydrostatic pressure treated cyanidin-3-glucoside and blueberry pectin complexes on dextran sodium sulfate-induced ulcerative colitis mice[J]. Food & Function, 2022, 13(8): 4384-4398. DOI: 10.1039/d1fo03376j
doi: 10.1039/d1fo03376j
|
75 |
SAMSAMI-KOR M, DARYANI N E, ASL P R, et al. Anti-inflammatory effects of resveratrol in patients with ulcerative colitis: a randomized, double-blind, placebo-controlled pilot study[J]. Archives of Medical Research, 2015, 46(4): 280-285. DOI: 10.1016/j.arcmed.2015.05.005
doi: 10.1016/j.arcmed.2015.05.005
|
76 |
YU L C H. Microbiota dysbiosis and barrier dysfunction in inflammatory bowel disease and colorectal cancers: exploring a common ground hypothesis[J]. Journal of Biomedical Science, 2018, 25(1): 79. DOI: 10.1186/s12929-018-0483-8
doi: 10.1186/s12929-018-0483-8
|
77 |
JAMIESON P E, CARBONERO F, STEVENS J F. Dietary (poly)phenols mitigate inflammatory bowel disease: therapeutic targets, mechanisms of action, and clinical observations[J]. Current Research in Food Science, 2023, 6: 100521. DOI: 10.1016/j.crfs.2023.100521
doi: 10.1016/j.crfs.2023.100521
|
78 |
HUANG T T, CHE Q J, CHEN X L, et al. Apple polyphenols improve intestinal antioxidant capacity and barrier function by activating the Nrf2/Keap1 signaling pathway in a pig model[J]. Journal of Agricultural and Food Chemistry, 2022, 70(24): 7576-7585. DOI: 10.1021/acs.jafc.2c02495
doi: 10.1021/acs.jafc.2c02495
|
79 |
WU Z H, HUANG S M, LI T T, et al. Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis[J]. Microbiome, 2021, 9(1): 184. DOI: 10.1186/s40168-021-01115-9
doi: 10.1186/s40168-021-01115-9
|
80 |
LIU N, FENG G, ZHANG X Y, et al. The functional role of lactoferrin in intestine mucosal immune system and infla-mmatory bowel disease[J]. Frontiers in Nutrition, 2021, 8: 759507. DOI: 10.3389/fnut.2021.759507
doi: 10.3389/fnut.2021.759507
|
81 |
WASTYK H C, FRAGIADAKIS G K, PERELMAN D, et al. Gut-microbiota-targeted diets modulate human immune status[J]. Cell, 2021, 184(16): 4137-4153. DOI: 10.1016/j.cell.2021.06.019
doi: 10.1016/j.cell.2021.06.019
|
82 |
HABENS F, SRINIVASAN N, OAKLEY F, et al. Novel sulfasalazine analogues with enhanced NF-κB inhibitory and apoptosis promoting activity[J]. Apoptosis, 2005, 10(3): 481-491. DOI: 10.1007/s10495-005-1877-0
doi: 10.1007/s10495-005-1877-0
|
83 |
WILLOT S, NOBLE A, DESLANDRES C. Methotrexate in the treatment of inflammatory bowel disease: an 8-year retrospective study in a Canadian pediatric IBD center[J]. Inflammatory Bowel Diseases, 2011, 17(12): 2521-2526. DOI: 10.1002/ibd.21653
doi: 10.1002/ibd.21653
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|