Please wait a minute...
浙江大学学报(农业与生命科学版)  2024, Vol. 50 Issue (5): 771-784    DOI: 10.3785/j.issn.1008-9209.2023.07.172
资源利用与环境保护     
秸秆还田对土壤微生物功能基因和功能类群的影响
王彬浩1,2(),吴愉萍3,陈彦博1,2,张方舟1,2,刘振宇4,张硕3,王先挺4()
1.浙江大学环境与资源学院,浙江 杭州 310058
2.浙江大学杭州国际科创中心,浙江 杭州 311200
3.宁波市农业农村绿色发展中心,浙江 宁波 315012
4.宁波市鄞州区农业技术推广站,浙江 宁波 315700
Effects of straw returning on functional genes and functional groups of soil microorganisms
Binhao WANG1,2(),Yuping WU3,Yanbo CHEN1,2,Fangzhou ZHANG1,2,Zhenyu LIU4,Shuo ZHANG3,Xianting WANG4()
1.College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, Zhejiang, China
3.Ningbo Agricultural and Rural Green Development Center, Ningbo 315012, Zhejiang, China
4.Agricultural Technical Extension Station of Yinzhou District in Ningbo, Ningbo 315700, Zhejiang, China
 全文: PDF(5089 KB)   HTML
摘要:

秸秆可持续化利用是加快农业绿色低碳发展的重要举措。在土壤一体化健康框架下,从微生物类群和功能视角解析秸秆还田对土壤生态健康综合影响的研究相对较少。为了解秸秆还田对土壤中抗生素抗性基因(antibiotic resistance genes, ARGs)、甲烷循环功能基因(methane-cycling genes, MCGs)、氮循环功能基因(nitrogen-cycling genes, NCGs)、毒力因子基因(virulence factor genes, VFGs)及其宿主微生物的影响,本研究从浙江省宁波市长期秸秆还田(5年以上)的水稻田中采集土壤样品,并对样品进行宏基因组高通量测序。结果表明:长期秸秆还田对土壤ARGs、MCGs、NCGs和VFGs多样性产生影响,其中NCGs和VFGs丰富度显著降低,且氮循环微生物类群的丰富度也显著降低。在微生物介导的甲烷循环过程中,长期秸秆还田导致关键产甲烷基因mcrABCG和产甲烷菌——马氏甲烷八叠球菌(Methanosarcina mazei)的丰度显著降低,也促使甲基营养型产甲烷基因丰度显著降低。值得注意的是,VFGs丰度在长期秸秆还田下显著增加。此外,本研究还发现mcrA/pmoAnorB/nosZ功能基因丰度比显著降低,暗示在秸秆还田下稻田中更多的CH4和N2O将被转化。距离矩阵多元回归分析表明,总有机碳和溶解有机碳与土壤功能类群组成密切相关(P<0.05)。综上所述,长期秸秆还田将增加稻田病害的风险,同时可能会降低CH4和N2O等温室气体的排放速率。

关键词: 秸秆还田功能基因功能类群致病菌    
Abstract:

Sustainable straw utilization is an important measure for accelerating the green and low-carbon development of agriculture. However, there is relatively little research on the comprehensive impact of straw returning on soil ecological health from the perspectives of microbial communities and functions within the framework of soil “One Health”. To address this gap, soil samples were collected from paddy fields in Ningbo City of Zhejiang Province, where straw has been returned for a long time (5 years or more), and high-throughput metagenomic sequencing was performed to understand the effects of straw returning on antibiotic resistance genes (ARGs), methane-cycling genes (MCGs), nitrogen-cycling genes (NCGs), virulence factor genes (VFGs), and their host taxa. The results showed that long-term straw returning affected the diversity of ARGs, MCGs, NCGs, and VFGs in the soil, with significantly decreased richness of NCGs and VFGs, as well as nitrogen-cycling taxa. Long-term straw returning also reduced the abundance of the key methanogenesis genes mcrA, B, C, and G and the methanogenesis taxon Methanosarcina mazei. It also significantly reduced the abundance of genes related to methylotrophic methanogenesis. Moreover, the abundance of VFGs significantly increased under long-term straw returning. In addition, the abundance ratio of the functional genes mcrA and pmoA, as well as that of norB and nosZ, was significantly reduced, which suggested that more CH4 and N2O in rice fields under straw returning will be converted. Multiple regression on distance matrix analysis showed that total organic carbon and dissolved organic carbon were closely related to the soil microbial functional group composition (P<0.05). In summary, long-term straw returning increases the risk of rice diseases and may also reduce emission rates of greenhouse gases, such as CH4 and N2O.

Key words: straw returning    functional genes    functional taxa    pathogens
收稿日期: 2023-07-17 出版日期: 2024-10-31
CLC:  S182  
基金资助: 浙江省宁波市农业技术推广项目(2021NT009)
通讯作者: 王先挺     E-mail: wangbh7@zju.edu.cn;xtw1124@hotmail.com
作者简介: 王彬浩(https://orcid.org/0000-0001-8182-8261),E-mail:wangbh7@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王彬浩
吴愉萍
陈彦博
张方舟
刘振宇
张硕
王先挺

引用本文:

王彬浩,吴愉萍,陈彦博,张方舟,刘振宇,张硕,王先挺. 秸秆还田对土壤微生物功能基因和功能类群的影响[J]. 浙江大学学报(农业与生命科学版), 2024, 50(5): 771-784.

Binhao WANG,Yuping WU,Yanbo CHEN,Fangzhou ZHANG,Zhenyu LIU,Shuo ZHANG,Xianting WANG. Effects of straw returning on functional genes and functional groups of soil microorganisms. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(5): 771-784.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.07.172        https://www.zjujournals.com/agr/CN/Y2024/V50/I5/771

图1  土壤理化特性变化对照组n=3,秸秆还田组n=9。图上不同小写字母表示在P<0.05水平差异有统计学意义。下同。
图2  土壤微生物功能基因(A)和功能类群(B)多样性变化
图3  秸秆还田不同年限土壤微生物功能类群群落组成的 β 多样性变化
图4  土壤微生物功能类群的总体丰度变化
图5  土壤微生物功能类群变化利用LEfSe软件对多级物种进行差异判别分析(LDA得分值>2.5)。
图6  土壤微生物功能基因丰度差异分析A. ARGs;B. MCGs;C. NCGs;D. VFGs。
图7  土壤微生物主要代谢通路的总体丰度变化*表示基因丰度在P<0.05水平差异有统计学意义。
图8  典型致病菌、产甲烷菌和关键功能基因的丰度变化

群落

Community

相关系数 Correlation coefficient
pHln (TN)ln (TOC)ln (DOC)ln (NH4-N)ln (AP)
ARGs携带类群 ARGs taxa (r2=0.454)-0.0120.0290.108-0.022*0.0080.002
MCGs携带类群 MCGs taxa (r2=0.318)0.0290.0110.086-0.029*-0.0280.010
NCGs携带类群 NCGs taxa (r2=0.367)0.0200.0320.076-0.036*-0.0260.013
VFGs携带类群 VFGs taxa (r2=0.406)-0.007-0.0320.133*-0.028-0.0120.010
表1  基于距离矩阵多元回归分析环境因子对微生物功能群落组成的相对重要性
1 严东权,薛颖昊,徐志宇,等.我国农作物秸秆直接还田利用现状、技术模式及发展建议[J].中国农业资源与区划,2023,44(4):1-14. DOI:10.7621/cjarrp.1005-9121.20230401
YAN D Q, XUE Y H, XU Z Y, et al. Current utilization status, technical models and development proposals for direct crop straw returning to field in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2023, 44(4): 1-14. (in Chinese with English abstract)
doi: 10.7621/cjarrp.1005-9121.20230401
2 朱晓晴.秸秆不同还田深度下土壤温室气体排放特征及其影响因素[D].沈阳:沈阳农业大学,2020.
ZHU X Q. Soil greenhouse gas emission and influence factors in different depths of straw returning[D]. Shenyang: Shenyang Agricultural University, 2020. (in Chinese with English abstract)
3 任晓明,陈粲,陈效民,等.秸秆还田深度对黄棕壤养分及物理性质的影响[J].水土保持通报,2018,38(2):58-64. DOI:10.13961/j.cnki.stbctb.2018.02.010
REN X M, CHEN C, CHEN X M, et al. Effects of straw returning depth on nutrients and physical properties of yellow brown soil[J]. Bulletin of Soil and Water Conservation, 2018, 38(2): 58-64. (in Chinese with English abstract)
doi: 10.13961/j.cnki.stbctb.2018.02.010
4 张国,逯非,赵红,等.我国农作物秸秆资源化利用现状及农户对秸秆还田的认知态度[J].农业环境科学学报,2017,36(5):981-988. DOI:10.11654/jaes.2016-1505
ZHANG G, LU F, ZHAO H, et al. Residue usage and farmers’ recognition and attitude toward residue retention in China’s croplands[J]. Journal of Agro-Environment Science, 2017, 36(5): 981-988. (in Chinese with English abstract)
doi: 10.11654/jaes.2016-1505
5 张大伟,李凤博,卞新民.不同耕作方式与秸秆还田对直播稻田土壤容重及病虫草害影响研究[M]//中国农学会耕作制度分会.中国农作制度研究进展(2008).沈阳:辽宁科学技术出版社,2008:416-423.
ZHANG D W, LI F B, BIAN X M. Study on the effects of different ploughing methods and straw return on soil capacity and pests and weeds in direct-seeded rice fields[M]//China Association of Agricultural Science Societies. Tillage System Branch. Progress of Research on Farming Systems in China (2008). Shenyang: Liaoning Science and Technology Publishing House, 2008: 416-423. (in Chinese with English abstract)
6 RODGERS-GRAY B S, SHAW M W. Substantial reductions in winter wheat diseases caused by addition of straw but not manure to soil[J]. Plant Pathology, 2000, 49(5): 590-599. DOI: 10.1046/j.1365-3059.2000.00497.x
doi: 10.1046/j.1365-3059.2000.00497.x
7 CHEN H G, CAO Q G, XIONG G L, et al. Composition of wheat rhizosphere antagonistic bacteria and wheat sharp eyespot as affected by rice straw mulching[J]. Pedosphere, 2010, 20(4): 505-514. DOI: 10.1016/S1002-0160(10)60040-9
doi: 10.1016/S1002-0160(10)60040-9
8 张杏雨,李思宇,余锋,等.作物秸秆还田对稻田温室气体排放效应的研究进展[J].杂交水稻,2021,36(5):1-7. DOI:10.16267/j.cnki.1005-3956.20210107.004
ZHANG X Y, LI S Y, YU F, et al. Research progresses on the effects of crop straw returning on greenhouse gas emission in paddy field[J]. Hybrid Rice, 2021, 36(5): 1-7. (in Chinese with English abstract)
doi: 10.16267/j.cnki.1005-3956.20210107.004
9 张熙栋,严玲,周伟,等.稻麦轮作下秸秆不同利用方式还田对稻田甲烷排放的影响[J].农业环境科学学报,2021,40(3):685-692. DOI:10.11654/jaes.2020-1003
ZHANG X D, YAN L, ZHOU W, et al. Effects of different straw utilization methods on methane emissions from straw returning to paddy field in a rice-wheat rotation system[J]. Journal of Agro-Environment Science, 2021, 40(3): 685-692. (in Chinese with English abstract)
doi: 10.11654/jaes.2020-1003
10 马林杰.秸秆还田方式和还田量影响棉花产量形成与土壤有机碳库和温室气体排放的生态机制[D].南京:南京农业大学,2020.
MA L J. Ecological mechanism of straw returning mode and returning amount affecting cotton yield formation and soil organic carbon pool and greenhouse gas emission[D]. Nanjing: Nanjing Agricultural University, 2020. (in Chinese with English abstract)
11 JIANG Y, QIAN H Y, HUANG S, et al. Acclimation of methane emissions from rice paddy fields to straw addition[J]. Science Advances, 2019, 5(1): eaau9038. DOI: 10.1126/sciadv.aau9038
doi: 10.1126/sciadv.aau9038
12 柴凯斌.秸秆还田对稻麦系统作物产量及温室气体排放的影响[D].武汉:华中农业大学,2018.
CHAI K B. The effects of straw incorporation on crop yield and greenhouse gas emissions under rice-wheat cropping systems[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese with English abstract)
13 DANIEL R. The metagenomics of soil[J]. Nature Reviews Microbiology, 2005, 3(6): 470-478. DOI: 10.1038/nrmicro1160
doi: 10.1038/nrmicro1160
14 MYROLD D D, ZEGLIN L H, JANSSON J K. The potential of metagenomic approaches for understanding soil microbial processes[J]. Soil Science Society of America Journal, 2014, 78(1): 3-10. DOI: 10.2136/sssaj2013.07.0287dgs
doi: 10.2136/sssaj2013.07.0287dgs
15 QIAN L, YU X L, ZHOU J Y, et al. MCycDB: a curated database for comprehensively profiling methane cycling pro-cesses of environmental microbiomes[J]. Molecular Ecology Resources, 2022, 22(5): 1803-1823. DOI: 10.1111/1755-0998.13589
doi: 10.1111/1755-0998.13589
16 TU Q C, LIN L, CHENG L, et al. NCycDB: a curated integ-rative database for fast and accurate metagenomic profiling of nitrogen cycling genes[J]. Bioinformatics, 2019, 35(6): 1040-1048. DOI: 10.1093/bioinformatics/bty741
doi: 10.1093/bioinformatics/bty741
17 YIN X L, JIANG X T, CHAI B L, et al. ARGs-OAP v2.0 with an expanded SARG database and Hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes[J]. Bioinformatics, 2018, 34(13): 2263-2270. DOI: 10.1093/bioinformatics/bty053
doi: 10.1093/bioinformatics/bty053
18 LIU B, ZHENG D D, ZHOU S Y, et al. VFDB 2022: a general classification scheme for bacterial virulence factors[J]. Nucleic Acids Research, 2022, 50(D1): D912-D917. DOI: 10.1093/nar/gkab1107
doi: 10.1093/nar/gkab1107
19 OUNIT R, WANAMAKER S, CLOSE T J, et al. CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers[J]. BMC Genomics, 2015, 16: 236. DOI: 10.1186/s12864-015-1419-2
doi: 10.1186/s12864-015-1419-2
20 LU J, RINCON N, WOOD D E, et al. Metagenome analysis using the Kraken software suite[J]. Nature Protocols, 2022, 17(12): 2815-2839. DOI:10.1038/s41596-024-01064-1
doi: 10.1038/s41596-024-01064-1
21 WANG B H, XU J M, WANG Y L, et al. Tackling soil ARG-carrying pathogens with global-scale metagenomics[J]. Advanced Science, 2023, 10(26): e2301980. DOI: 10.1002/advs.202301980
doi: 10.1002/advs.202301980
22 王彬浩,陈彦博,刘荣杰,等.秸秆焚烧对白叶枯病稻田中致病菌和抗生素抗性基因的影响[J].浙江大学学报(农业与生命科学版),2023,49(6):840-852. DOI:10.3785/j.issn.1008-9209.2023.01.131
WANG B H, CHEN Y B, LIU R J, et al. Effects of straw burning on pathogens and antibiotic resistance genes in paddy fields with bacterial leaf blight[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(6): 840-852. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2023.01.131
23 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.
BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
24 BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120. DOI: 10.1093/bioinformatics/btu170
doi: 10.1093/bioinformatics/btu170
25 EMERSON J B, ROUX S, BRUM J R, et al. Host-linked soil viral ecology along a permafrost thaw gradient[J]. Nature Microbiology, 2018, 3: 870-880. DOI: 10.1038/s41564-018-0190-y
doi: 10.1038/s41564-018-0190-y
26 殷尧翥,郭长春,孙永健,等.稻油轮作下油菜秸秆还田与水氮管理对杂交稻群体质量和产量的影响[J].中国水稻科学,2019,33(3):257-268. DOI:10.16819/j.1001-7216.2019.8102
YIN Y Z, GUO C C, SUN Y J, et al. Effects of rape straw retention and water and nitrogen management on population quality and yield of hybrid rice under rice-rape rotation[J]. Chinese Journal of Rice Science, 2019, 33(3): 257-268. (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2019.8102
27 肖金宝.秸秆腐熟剂用量对麦秆腐解及土壤温室气体排放的调控效应[D].杨凌:西北农林科技大学,2022.
XIAO J B. Effects of straw decomposing agent dosage on wheat straw decomposition and soil greenhouse gas emissions[D]. Yangling: Northwest A & F University, 2022. (in Chinese with English abstract)
28 KOLB S. Aerobic methanol-oxidizing bacteria in soil[J]. FEMS Microbiology Letters, 2009, 300(1): 1-10. DOI: 10.1111/j.1574-6968.2009.01681.x
doi: 10.1111/j.1574-6968.2009.01681.x
29 彭毅,李惠通,张少维,等.秸秆还田、地膜覆盖及施氮对冬小麦田N2O和N2排放的影响[J].环境科学,2022,43(3):1668-1677. DOI:10.13227/j.hjkx.202105100
PENG Y, LI H T, ZHANG S W, et al. Effect of film mulching, straw retention, and nitrogen fertilization on the N2O and N2 emission in a winter wheat field[J]. Environmental Science, 2022, 43(3): 1668-1677. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.202105100
30 QIU W H, BAO M, YANG W J, et al. Soil surface management of legume cover has the potential to mitigate nitrous oxide emissions from the fallow season during wheat production[J]. Science of the Total Environment, 2022, 820: 153352. DOI: 10.1016/j.scitotenv.2022.153352
doi: 10.1016/j.scitotenv.2022.153352
31 YANG H J, MA J X, RONG Z Y, et al. Wheat straw return influences nitrogen-cycling and pathogen associated soil microbiota in a wheat-soybean rotation system[J]. Frontiers in Microbiology, 2019, 10: 1811. DOI: 10.3389/fmicb.2019.01811
doi: 10.3389/fmicb.2019.01811
32 万小楠,赵珂悦,吴雄伟,等.秸秆还田对冬小麦-夏玉米农田土壤固碳、氧化亚氮排放和全球增温潜势的影响[J].环境科学,2022,43(1):569-576. DOI:10.13227/j.hjkx.202105185
WAN X N, ZHAO K Y, WU X W, et al. Effects of stalk incorporation on soil carbon sequestration, nitrous oxide emissions, and global warming potential of a winter wheat-summer maize field in Guanzhong Plain[J]. Environmental Science, 2022, 43(1): 569-576. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.202105185
33 李洪林,刘凤艳,龚振平,等.稻秆还田对水稻主要病害发生的影响[J].作物研究,2012,26(1):7-10. DOI:10.3969/j.issn.1001-5280.2012.01.03
LI H L, LIU F Y, GONG Z P, et al. Effect of straw return back to paddy field on occurrence of rice major diseases[J]. Crop Research, 2012, 26(1): 7-10. (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-5280.2012.01.03
34 SU Y, YU M, XI H, et al. Soil microbial community shifts with long-term of different straw return in wheat-corn rotation system[J]. Scientific Reports, 2020, 10(1): 6360. DOI: 10.1038/s41598-020-63409-6
doi: 10.1038/s41598-020-63409-6
35 乔玉强,曹承富,赵竹,等.秸秆还田与施氮量对小麦产量和品质及赤霉病发生的影响[J].麦类作物学报,2013,33(4):727-731. DOI:10.7606/j.issn.1009-1041.2013.04.018
QIAO Y Q, CAO C F, ZHAO Z, et al. Effects of straw-returning and N-fertilizer application on yield, quality and occurrence of Fusarium head blight of wheat[J]. Journal of Triticeae Crops, 2013, 33(4): 727-731. (in Chinese with English abstract)
doi: 10.7606/j.issn.1009-1041.2013.04.018
36 马垒,李燕,魏建林,等.长期秸秆还田对潮土真菌群落、酶活性和小麦产量的影响[J].环境科学,2022,43(10):4755-4764. DOI:10.13227/j.hjkx.202201210
MA L, LI Y, WEI J L, et al. Effects of long-term straw returning on fungal community, enzyme activity and wheat yield in fluvo-aquic soil[J]. Environmental Science, 2022, 43(10): 4755-4764. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.202201210
[1] 张润润,张颀宜,楼倚洋,陈秀琴,冯劲松,丁甜. 食品工业中细菌生物被膜研究进展[J]. 浙江大学学报(农业与生命科学版), 2024, 50(4): 551-567.
[2] 王彬浩,陈彦博,刘荣杰,王冬群,董作珍,狄蕊,王笑,吴愉萍. 秸秆焚烧对白叶枯病稻田中致病菌和抗生素抗性基因的影响[J]. 浙江大学学报(农业与生命科学版), 2023, 49(6): 840-852.
[3] 彭志芸,吕旭,伍杂日曲,舒川海,谌洁,向开宏,杨志远,马均. 麦(油)-稻轮作下秸秆还田与氮肥运筹对土壤氮素供应及直播稻产量的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(1): 45-56.
[4] 温旭,马旭洲,范伟,李星星,钟颖良. 不同面积芦苇稻幼蟹塘浮游植物功能类群的结构特征[J]. 浙江大学学报(农业与生命科学版), 2019, 45(1): 85-94.
[5] 潘航, 李肖梁, 方维焕, 乐敏. 美国近20 年主要食源性致病菌的分布及耐药性分析——对我国细菌耐药性监控工作的启示[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 237-246.
[6] 冯佳胤,朱敏,何艳. 土壤主要还原转化过程中微生物功能基因多样性研究进展[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 663-675.
[7] 徐幼平 徐秋芳 宋晓毅等 . 病毒诱导的基因沉默[J]. 浙江大学学报(农业与生命科学版), 2008, 34(2): 119-131.