Please wait a minute...
浙江大学学报(农业与生命科学版)  2024, Vol. 50 Issue (5): 715-723    DOI: 10.3785/j.issn.1008-9209.2023.06.272
综述     
组蛋白乙酰化调控因子在动物早期胚胎发育过程中的作用研究进展
李潇腾(),赵盼盼,张坤()
浙江大学动物科学学院,浙江省奶牛遗传改良与乳品质研究重点实验室,浙江 杭州 310058
Research progress on the role of histone acetylation regulatory factors during the early embryonic development in animals
Xiaoteng LI(),Panpan ZHAO,Kun ZHANG()
Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
 全文: PDF(1701 KB)   HTML
摘要:

精卵结合后,动物胚胎在早期发育过程中会经历剧烈的表观遗传重编程,包括DNA甲基化、组蛋白修饰和染色质重塑等,以确保受精前后高度分化的配子形成全能性的细胞。重编程与早期胚胎发育过程的各个阶段紧密相关,有多种调控因子参与其中,如乙酰转移酶、脱乙酰酶及组蛋白修饰阅读器等均参与组蛋白乙酰化的调控,并发挥重要功能。本文综述了组蛋白乙酰化调控因子在动物早期胚胎发育过程中的作用,探讨了早期胚胎发育过程中的表观遗传现象及机制,有助于更好地理解哺乳动物早期胚胎发育机制,减少胚胎发育缺陷,从而提升家畜繁殖力。

关键词: 家畜繁殖早期胚胎着床前表观遗传组蛋白乙酰化    
Abstract:

Following sperm-egg fusion, animal embryos undergo severe epigenetic reprogramming during the early development, encompassing DNA methylation, histone modification, as well as chromatin remodeling, to ensure that highly differentiated gametes form totipotent embryonic cells upon fertilization. Reprogramming is intimately connected to each stage of early embryonic development, and numerous regulatory factors are involved, such as acetyltransferases, deacetylases and histone modification readers, which participate in the regulation of histone acetylation and serve crucial functions. This review summarizes the roles of histone acetylation regulatory factors in the early embryonic development of animals, discusses epigenetic phenomena and mechanisms during the early embryonic development, contributes to a better understanding of the developmental mechanisms of mammalian early embryos, reduces embryonic developmental defects, and enhances livestock fertility.

Key words: domestic animal    fertility    early embryo    preimplantation    epigenetics    histone acetylation
收稿日期: 2023-06-27 出版日期: 2024-10-31
CLC:  S813  
基金资助: 浙江省农业(畜禽)新品种选育重大科技专项(2021C02068-1-3);国家自然科学基金国际(地区)合作与交流项目(32161143032)
通讯作者: 张坤     E-mail: xxiaotl@163.com;kzhang@zju.edu.cn
作者简介: 李潇腾(https://orcid.org/0009-0007-2790-8157),E-mail:xxiaotl@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李潇腾
赵盼盼
张坤

引用本文:

李潇腾,赵盼盼,张坤. 组蛋白乙酰化调控因子在动物早期胚胎发育过程中的作用研究进展[J]. 浙江大学学报(农业与生命科学版), 2024, 50(5): 715-723.

Xiaoteng LI,Panpan ZHAO,Kun ZHANG. Research progress on the role of histone acetylation regulatory factors during the early embryonic development in animals. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(5): 715-723.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.06.272        https://www.zjujournals.com/agr/CN/Y2024/V50/I5/715

图1  哺乳动物早期胚胎发育与表观遗传重编程左边图组为一般哺乳动物早期胚胎发育阶段模式图;右边图组为表观遗传重编程的3个主要过程和对应的染色质结构变化。Me:甲基化。
图2  组蛋白乙酰化及其相关因子在哺乳动物早期胚胎发育中的作用组蛋白氨基末端特定的赖氨酸残基在组蛋白乙酰转移酶的作用下被乙酰基修饰,发生组蛋白乙酰化,常见的乙酰转移酶包括SRC-3、PCAF、CBP/P300(作用于转录调控和正常ZGA)、TIP60(参与转录调节和DNA损伤修复)和GCN5(维持细胞周期和基因组完整)等;乙酰化赖氨酸残基被乙酰化修饰阅读器识别并结合,如BRD4蛋白参与ZGA激活、X染色体上调启动及调控NANOG表达;在组蛋白脱乙酰酶作用下发生去乙酰化,常见的脱乙酰酶有HDAC1/2(维持正常ZGA和胚胎发育)、SIN3A(通过CCNB1调控猪胚胎,通过HDAC1调控小鼠胚胎)、RBBP4/7(促进细胞周期进程与谱系发育)、SUDS3(通过FGF4/ERK通路影响谱系特化)、NuRD和NcoR等。组蛋白乙酰化动态过程与转录活性均密切相关。Ac:乙酰化。
1 邱金龙,史延,李爽,等.牛活体采卵和体外胚胎生产技术的应用现状和展望[J].浙江大学学报(农业与生命科学版),2022,48(5):557-565. DOI:10.3785/j.issn.1008-9209.2021.12.272
QIU J L, SHI Y, LI S, et al. Application status and prospect of bovine ovum pick-up and in vitro embryo production tech-nologies[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 557-565. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2021.12.272
2 ORON E, IVANOVA N. Cell fate regulation in early mammalian development[J]. Physical Biology, 2012, 9(4): 045002. DOI: 10.1088/1478-3975/9/4/045002
doi: 10.1088/1478-3975/9/4/045002
3 XU R M, LI C, LIU X Y, et al. Insights into epigenetic patterns in mammalian early embryos[J]. Protein & Cell, 2021, 12(1): 7-28. DOI: 10.1007/s13238-020-00757-z
doi: 10.1007/s13238-020-00757-z
4 DANG Y N, LUO L, SHI Y, et al. KDM5-mediated redis-tribution of H3K4me3 is required for oocyte-to-embryonic transition in cattle[J]. Biology of Reproduction, 2022, 106(6): 1059-1071. DOI: 10.1093/biolre/ioac047
doi: 10.1093/biolre/ioac047
5 BERNSTEIN B E, MIKKELSEN T S, XIE X H, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells[J]. Cell, 2006, 125(2): 315-326. DOI: 10.1016/j.cell.2006.02.041
doi: 10.1016/j.cell.2006.02.041
6 TESSADORI F, GILTAY J C, HURST J A, et al. Germline mutations affecting the histone H4 core cause a developmental syndrome by altering DNA damage response and cell cycle control[J]. Nature Genetics, 2017, 49(11): 1642-1646. DOI: 10.1038/ng.3956
doi: 10.1038/ng.3956
7 LI S, SHI Y, DANG Y N, et al. Linker histone H1FOO is required for bovine preimplantation development by regulating lineage specification and chromatin structure[J]. Biology of Reproduction, 2022, 107(6): 1425-1438. DOI: 10.1093/biolre/ioac167
doi: 10.1093/biolre/ioac167
8 ZHANG K, WANG H, RAJPUT S K, et al. Characterization of H3.3 and HIRA expression and function in bovine early embryos[J]. Molecular Reproduction and Development, 2018, 85(2): 106-116. DOI: 10.1002/mrd.22939
doi: 10.1002/mrd.22939
9 SADOUL K, BOYAULT C, PABION M, et al. Regulation of protein turnover by acetyltransferases and deacetylases[J]. Biochimie, 2008, 90(2): 306-312. DOI: 10.1016/j.biochi.2007.06.009
doi: 10.1016/j.biochi.2007.06.009
10 DE RUIJTER A J M, VAN GENNIP A H, CARON H N, et al. Histone deacetylases (HDACs): characterization of the classical HDAC family[J]. The Biochemical Journal, 2003, 370(Pt 3): 737-749. DOI: 10.1042/BJ20021321
doi: 10.1042/BJ20021321
11 YANG X J, SETO E. The Rpd3/Hda1 family of lysine deacety-lases: from bacteria and yeast to mice and men[J]. Nature Reviews Molecular Cell Biology, 2008, 9(3): 206-218. DOI: 10.1038/nrm2346
doi: 10.1038/nrm2346
12 GAO L, CUETO M A, ASSELBERGS F, et al. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family[J]. The Journal of Biological Chemistry, 2002, 277(28): 25748-25755. DOI: 10.1074/jbc.M111871200
doi: 10.1074/jbc.M111871200
13 ZAWARE N, ZHOU M M. Bromodomain biology and drug discovery[J]. Nature Structural & Molecular Biology, 2019, 26(10): 870-879. DOI: 10.1038/s41594-019-0309-8
doi: 10.1038/s41594-019-0309-8
14 LI Y Y, WEN H, XI Y X, et al. AF9 YEATS domain links histone acetylation to DOT1L-mediated H3K79 methylation[J]. Cell, 2014, 159(3): 558-571. DOI: 10.1016/j.cell.2014.09.049
doi: 10.1016/j.cell.2014.09.049
15 HE Z X, WEI B F, ZHANG X, et al. Current development of CBP/p300 inhibitors in the last decade[J]. European Journal of Medicinal Chemistry, 2021, 209: 112861. DOI: 10.1016/j.ejmech.2020.112861
doi: 10.1016/j.ejmech.2020.112861
16 KALKHOVEN E. CBP and p300: HATs for different occasions[J]. Biochemical Pharmacology, 2004, 68(6): 1145-1155. DOI: 10.1016/j.bcp.2004.03.045
doi: 10.1016/j.bcp.2004.03.045
17 DRAZIC A, MYKLEBUST L M, REE R, et al. The world of protein acetylation[J]. Biochimica et Biophysica Acta (BBA)—Proteins and Proteomics, 2016, 1864(10): 1372-1401. DOI: 10.1016/j.bbapap.2016.06.007
doi: 10.1016/j.bbapap.2016.06.007
18 WEINERT B T, NARITA T, SATPATHY S, et al. Time-resolved analysis reveals rapid dynamics and broad scope of the CBP/p300 acetylome[J]. Cell, 2018, 174(1): 231-244. DOI: 10.1016/j.cell.2018.04.033
doi: 10.1016/j.cell.2018.04.033
19 WANG M, CHEN Z Y, ZHANG Y. CBP/p300 and HDAC activities regulate H3K27 acetylation dynamics and zygotic genome activation in mouse preimplantation embryos[J]. The EMBO Journal, 2022, 41(22): e112012. DOI: 10.15252/embj.2022112012
doi: 10.15252/embj.2022112012
20 ESPINOLA-LOPEZ J M, TAN S. The Ada2/Ada3/Gcn5/Sgf29 histone acetyltransferase module[J]. Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms, 2021, 1864(2): 194629. DOI: 10.1016/j.bbagrm.2020.194629
doi: 10.1016/j.bbagrm.2020.194629
21 YAMAUCHI T, YAMAUCHI J, KUWATA T, et al. Distinct but overlapping roles of histone acetylase PCAF and of the closely related PCAF-B/GCN5 in mouse embryogenesis[J]. PNAS, 2000, 97(21): 11303-11306.
22 MUSTACHIO L M, ROSZIK J, FARRIA A, et al. Targeting the SAGA and ATAC transcriptional coactivator complexes in MYC-driven cancers[J]. Cancer Research, 2020, 80(10): 1905-1911. DOI: 10.1158/0008-5472.CAN-19-3652
doi: 10.1158/0008-5472.CAN-19-3652
23 张赫,张士猛,周平坤.乙酰基转移酶Tip60(KAT5)的功能研究进展[J].生物化学与生物物理进展,2015,42(1):25-31. DOI:10.3724/SP.J.1206.2014.00042
ZHANG H, ZHANG S M, ZHOU P K. Function research of acetyltransferase Tip60(KAT5)[J]. Progress in Biochemistry and Biophysics, 2015, 42(1): 25-31. (in Chinese with English abstract)
doi: 10.3724/SP.J.1206.2014.00042
24 MIR U S, BHAT A, MUSHTAQ A, et al. Role of histone acetyltransferases MOF and Tip60 in genome stability[J]. DNA Repair, 2021, 107: 103205. DOI: 10.1016/j.dnarep.2021.103205
doi: 10.1016/j.dnarep.2021.103205
25 罗乐,刘晓燕,刘麟,等.Tip60调控DNA作用对胚胎发育中的影响及作用机制[J].海南医学院学报,2020,26(4):257-261. DOI:10.13210/j.cnki.jhmu.20200213.001
LUO L, LIU X Y, LIU L, et al. The effect and mechanism of Tip60 regulating DNA on embryo development[J]. Journal of Hainan Medical University, 2020, 26(4): 257-261. (in Chinese with English abstract)
doi: 10.13210/j.cnki.jhmu.20200213.001
26 GUO J, ZHOU W J, NIU Y J, et al. TIP60 contributes to porcine embryonic development by regulating DNA damage response[J]. Theriogenology, 2018, 108: 146-152. DOI: 10.1016/j.theriogenology.2017.11.033
doi: 10.1016/j.theriogenology.2017.11.033
27 KELLY R D W, CHANDRU A, WATSON P J, et al. Histone deacetylase (HDAC) 1 and 2 complexes regulate both histone acetylation and crotonylation in vivo [J]. Scientific Reports, 2018, 8: 14690. DOI: 10.1038/s41598-018-32927-9
doi: 10.1038/s41598-018-32927-9
28 DANG Y N, LI S, ZHAO P P, et al. The lysine deacetylase activity of histone deacetylases 1 and 2 is required to safeguard zygotic genome activation in mice and cattle[J]. Development, 2022, 149(11): dev200854. DOI: 10.1242/dev.200854
doi: 10.1242/dev.200854
29 CHOI S H, GEARHART M D, CUI Z Y, et al. DUX4 recruits p300/CBP through its C-terminus and induces global H3K27 acetylation changes[J]. Nucleic Acids Research, 2016, 44(11): 5161-5173. DOI: 10.1093/nar/gkw141
doi: 10.1093/nar/gkw141
30 HASSIG C A, TONG J K, FLEISCHER T C, et al. A role for histone deacetylase activity in HDAC1-mediated transcriptional repression[J]. PNAS, 1998, 95(7): 3519-3524.
31 KURITA M, HOLLOWAY T, GARCÍA-BEA A, et al. HDAC2 regulates atypical antipsychotic responses through the modu-lation of mGlu2 promoter activity[J]. Nature Neuroscience, 2012, 15(9): 1245-1254. DOI: 10.1038/nn.3181
doi: 10.1038/nn.3181
32 ZENG F Y, SCHULTZ R M. RNA transcript profiling during zygotic gene activation in the preimplantation mouse embryo[J]. Developmental Biology, 2005, 283(1): 40-57. DOI: 10.1016/j.ydbio.2005.03.038
doi: 10.1016/j.ydbio.2005.03.038
33 ZHAO P P, WANG H N, WANG H, et al. Essential roles of HDAC1 and 2 in lineage development and genome-wide DNA methylation during mouse preimplantation development[J]. Epigenetics, 2020, 15(4): 369-385. DOI: 10.1080/15592294.2019.1669375
doi: 10.1080/15592294.2019.1669375
34 KRUISWIJK F, LABUSCHAGNE C F, VOUSDEN K H. p53 in survival, death and metabolic health: a lifeguard with a licence to kill[J]. Nature Reviews Molecular Cell Biology, 2015, 16(7): 393-405. DOI: 10.1038/nrm4007
doi: 10.1038/nrm4007
35 MA P P, SCHULTZ R M. Histone deacetylase 1 (HDAC1) regulates histone acetylation, development, and gene expression in preimplantation mouse embryos[J]. Developmental Biology, 2008, 319(1): 110-120. DOI: 10.1016/j.ydbio.2008.04.011
doi: 10.1016/j.ydbio.2008.04.011
36 LAUGESEN A, HELIN K. Chromatin repressive complexes in stem cells, development, and cancer[J]. Cell Stem Cell, 2014, 14(6): 735-751. DOI: 10.1016/j.stem.2014.05.006
doi: 10.1016/j.stem.2014.05.006
37 XUE Z G, HUANG K, CAI C C, et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing[J]. Nature, 2013, 500(7464): 593-597. DOI: 10.1038/nature12364
doi: 10.1038/nature12364
38 ZHAO P P, LI S, WANG H N, et al. Sin3a regulates the developmental progression through morula-to-blastocyst transition via Hdac1[J]. The FASEB Journal, 2019, 33(11): 12541-12553. DOI: 10.1096/fj.201901213R
doi: 10.1096/fj.201901213R
39 LUO L, DANG Y N, SHI Y, et al. SIN3A regulates porcine early embryonic development by modulating CCNB1 expression[J]. Frontiers in Cell and Developmental Biology, 2021, 9: 604232. DOI: 10.3389/fcell.2021.604232
doi: 10.3389/fcell.2021.604232
40 STRAUSS B, HARRISON A, COELHO P A, et al. Cyclin B1 is essential for mitosis in mouse embryos, and its nuclear export sets the time for mitosis[J]. The Journal of Cell Biology, 2018, 217(1): 179-193. DOI: 10.1083/jcb.201612147
doi: 10.1083/jcb.201612147
41 ZHANG D X, CUI X S, KIM N H. Molecular characterization and polyadenylation-regulated expression of cyclin B1 and Cdc2 in porcine oocytes and early parthenotes[J]. Molecular Reproduction and Development, 2010, 77(1): 38-50. DOI: 10.1002/mrd.21095
doi: 10.1002/mrd.21095
42 ALLAND L, DAVID G, SHEN-LI H, et al. Identification of mammalian Sds3 as an integral component of the Sin3/histone deacetylase corepressor complex[J]. Molecular and Cellular Biology, 2002, 22(8): 2743-2750. DOI: 10.1128/MCB.22.8.2743-2750.2002
doi: 10.1128/MCB.22.8.2743-2750.2002
43 ZHANG K, DAI X P, WALLINGFORD M C, et al. Depletion of Suds3 reveals an essential role in early lineage specification[J]. Developmental Biology, 2013, 373(2): 359-372. DOI: 10.1016/j.ydbio.2012.10.026
doi: 10.1016/j.ydbio.2012.10.026
44 ROSSANT J. Genetic control of early cell lineages in the mammalian embryo[J]. Annual Review of Genetics, 2018, 52: 185-201. DOI: 10.1146/annurev-genet-120116-024544
doi: 10.1146/annurev-genet-120116-024544
45 GUO G J, HUSS M, TONG G Q, et al. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst[J]. Developmental Cell, 2010, 18(4): 675-685. DOI: 10.1016/j.devcel.2010.02.012
doi: 10.1016/j.devcel.2010.02.012
46 DIETRICH J E, HIIRAGI T. Stochastic patterning in the mouse pre-implantation embryo[J]. Development, 2007, 134(23): 4219-4231. DOI: 10.1242/dev.003798
doi: 10.1242/dev.003798
47 NIAKAN K K, JI H K, MAEHR R, et al. Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal[J]. Genes & Development, 2010, 24(3): 312-326. DOI: 10.1101/gad.1833510
doi: 10.1101/gad.1833510
48 KUNATH T, SABA-EL-LEIL M K, ALMOUSAILLEAKH M, et al. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment[J]. Development, 2007, 134(16): 2895-2902. DOI: 10.1242/dev.02880
doi: 10.1242/dev.02880
49 LU C W, YABUUCHI A, CHEN L Y, et al. Ras-MAPK signaling promotes trophectoderm formation from embryonic stem cells and mouse embryos[J]. Nature Genetics, 2008, 40(7): 921-926. DOI: 10.1038/ng.173
doi: 10.1038/ng.173
50 YUAN H, CORBI N, BASILICO C, et al. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3[J]. Genes & Development, 1995, 9(21): 2635-2645.
51 XIAO L Y, DANG Y N, HU B J, et al. Overlapping functions of RBBP4 and RBBP7 in regulating cell proliferation and histone H3.3 deposition during mouse preimplantation deve-lopment[J]. Epigenetics, 2022, 17(10): 1205-1218. DOI: 10.1080/15592294.2021.1999006
doi: 10.1080/15592294.2021.1999006
52 HUANG C, ZHU B. H3.3 turnover: a mechanism to poise chromatin for transcription, or a response to open chromatin?[J]. BioEssays, 2014, 36(6): 579-584. DOI: 10.1002/bies.201400005
doi: 10.1002/bies.201400005
53 CHEN P, ZHAO J C, WANG Y, et al. H3.3 actively marks enhancers and primes gene transcription via opening higher-ordered chromatin[J]. Genes & Development, 2013, 27(19): 2109-2124. DOI: 10.1101/gad.222174.113
doi: 10.1101/gad.222174.113
54 NEWPORT J, KIRSCHNER M. A major developmental transition in early Xenopus embryos: Ⅱ. Control of the onset of transcription[J]. Cell, 1982, 30(3): 687-696.
55 CHAN S H, TANG Y, MIAO L Y, et al. Brd4 and P300 confer transcriptional competency during zygotic genome activation[J]. Developmental Cell, 2019, 49(6): 867-881. DOI: 10.1016/j.devcel.2019.05.037
doi: 10.1016/j.devcel.2019.05.037
56 BOYER L A, LEE T I, COLE M F, et al. Core transcriptional regulatory circuitry in human embryonic stem cells[J]. Cell, 2005, 122(6): 947-956. DOI: 10.1016/j.cell.2005.08.020
doi: 10.1016/j.cell.2005.08.020
57 MITSUI K, TOKUZAWA Y, ITOH H, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells[J]. Cell, 2003, 113(5): 631-642. DOI: 10.1016/s0092-8674(03)00393-3
doi: 10.1016/s0092-8674(03)00393-3
58 LIU W, STEIN P, CHENG X, et al. BRD4 regulates Nanog expression in mouse embryonic stem cells and preimplantation embryos[J]. Cell Death & Differentiation, 2014, 21(12): 1950-1960. DOI: 10.1038/cdd.2014.124
doi: 10.1038/cdd.2014.124
[1] 吴潇彤,史延,李爽,王少华,张坤. 牛和小鼠早期胚胎发育过程中细胞谱系发育调控的比较[J]. 浙江大学学报(农业与生命科学版), 2023, 49(6): 765-775.
[2] 邱金龙,罗磊,胡冰洁,党燕娜,李爽,史延,王少华,张坤. DPPA2/DPPA4在牛着床前胚胎发育过程中的作用及机制[J]. 浙江大学学报(农业与生命科学版), 2023, 49(2): 253-260.
[3] 苏菲,薛银,徐丽华,李军星,余斌,袁秀芳. 鼻黏膜复合佐剂LTB-Rg1在小鼠体内对猪繁殖与呼吸综合征病毒灭活疫苗的增强作用及其生物安全性评价[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 383-392.
[4] 彭飞,方弟安,周彦锋,唐永凯,徐东坡,刘凯,苏胜彦,尤洋. 中华绒螯蟹三龄群体的生物学可塑性初探[J]. 浙江大学学报(农业与生命科学版), 2022, 48(1): 86-95.
[5] 陈小连,宋文静,周泉勇,宋琼莉,邹志恒,刘林秀,胡利珍,韦启鹏,严景生,达列亚•阿合买提null. 广东紫珠提取物对母猪繁殖性能、免疫、抗氧化功能及肠道微生物的影响[J]. 浙江大学学报(农业与生命科学版), 2020, 46(3): 360-368.
[6] 曹丽雯,支肖,戴嘉禾,于宁宁,陈怡倩,叶立新,陈利萍,徐礼根. 蛛网萼未成熟种子培养与离体繁殖[J]. 浙江大学学报(农业与生命科学版), 2019, 45(2): 157-163.
[7] 王涵, 赵盼盼, 张坤. 哺乳动物着床前胚胎中细胞系的分化及调控机制[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 125-130.
[8] 王利红1,2, 高勤学2, 张伟2, 靳春方3, 李玉春4, 王锋1. 绵羊LHR基因PCR-SSCP多态性与繁殖性状的关联分析[J]. 浙江大学学报(农业与生命科学版), 2012, 38(4): 362-369.
[9] 冯俊, 邓斐月, 余燕玲, 杨彩梅, 陈安国. 微囊化β-胡萝卜素对妊娠母猪繁殖、免疫和抗氧化功能的影响[J]. 浙江大学学报(农业与生命科学版), 2009, 35(6): 665-669.
[10] 王宏宝, 戚龙君, 王金成, 宋绍祎, 林茂松. 马铃薯腐烂线虫不同群体同工酶表型与致病力研究[J]. 浙江大学学报(农业与生命科学版), 2009, 35(4): 425-432.
[11] 陈赛娟, 刘涛, 孙继国, 谷子林, 娄华. 河北省猪繁殖与呼吸综合征病毒主要结构蛋白基因变异分析[J]. 浙江大学学报(农业与生命科学版), 2009, 35(3): 266-271.
[12] 吴国星  叶恭银  胡萃  程家安 . 重金属镉对棕尾别麻蝇亲代及子代生长发育与繁殖的影响[J]. 浙江大学学报(农业与生命科学版), 2006, 32(1): 71-76.
[13] 姜维梅  李凤玉. 大籽猕猴桃(Actinidia macrosperma)离体再生系统的建立[J]. 浙江大学学报(农业与生命科学版), 2003, 29(3): 295-299.
[14] 曾志将 吴桂生 张中印 郭冬生. 割雄蜂蛹对蜂群生产力和繁殖力及分蜂性的影响[J]. 浙江大学学报(农业与生命科学版), 2000, 26(5): 540-542.
[15] 奚刚 许梓荣 钱利纯. 日粮中碘水平对妊娠母猪繁殖性能的影响[J]. 浙江大学学报(农业与生命科学版), 2000, 26(2): 165-168.