综述 |
|
|
|
|
组蛋白乙酰化调控因子在动物早期胚胎发育过程中的作用研究进展 |
李潇腾(),赵盼盼,张坤() |
浙江大学动物科学学院,浙江省奶牛遗传改良与乳品质研究重点实验室,浙江 杭州 310058 |
|
Research progress on the role of histone acetylation regulatory factors during the early embryonic development in animals |
Xiaoteng LI(),Panpan ZHAO,Kun ZHANG() |
Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China |
1 |
邱金龙,史延,李爽,等.牛活体采卵和体外胚胎生产技术的应用现状和展望[J].浙江大学学报(农业与生命科学版),2022,48(5):557-565. DOI:10.3785/j.issn.1008-9209.2021.12.272 QIU J L, SHI Y, LI S, et al. Application status and prospect of bovine ovum pick-up and in vitro embryo production tech-nologies[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 557-565. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2021.12.272
|
2 |
ORON E, IVANOVA N. Cell fate regulation in early mammalian development[J]. Physical Biology, 2012, 9(4): 045002. DOI: 10.1088/1478-3975/9/4/045002
doi: 10.1088/1478-3975/9/4/045002
|
3 |
XU R M, LI C, LIU X Y, et al. Insights into epigenetic patterns in mammalian early embryos[J]. Protein & Cell, 2021, 12(1): 7-28. DOI: 10.1007/s13238-020-00757-z
doi: 10.1007/s13238-020-00757-z
|
4 |
DANG Y N, LUO L, SHI Y, et al. KDM5-mediated redis-tribution of H3K4me3 is required for oocyte-to-embryonic transition in cattle[J]. Biology of Reproduction, 2022, 106(6): 1059-1071. DOI: 10.1093/biolre/ioac047
doi: 10.1093/biolre/ioac047
|
5 |
BERNSTEIN B E, MIKKELSEN T S, XIE X H, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells[J]. Cell, 2006, 125(2): 315-326. DOI: 10.1016/j.cell.2006.02.041
doi: 10.1016/j.cell.2006.02.041
|
6 |
TESSADORI F, GILTAY J C, HURST J A, et al. Germline mutations affecting the histone H4 core cause a developmental syndrome by altering DNA damage response and cell cycle control[J]. Nature Genetics, 2017, 49(11): 1642-1646. DOI: 10.1038/ng.3956
doi: 10.1038/ng.3956
|
7 |
LI S, SHI Y, DANG Y N, et al. Linker histone H1FOO is required for bovine preimplantation development by regulating lineage specification and chromatin structure[J]. Biology of Reproduction, 2022, 107(6): 1425-1438. DOI: 10.1093/biolre/ioac167
doi: 10.1093/biolre/ioac167
|
8 |
ZHANG K, WANG H, RAJPUT S K, et al. Characterization of H3.3 and HIRA expression and function in bovine early embryos[J]. Molecular Reproduction and Development, 2018, 85(2): 106-116. DOI: 10.1002/mrd.22939
doi: 10.1002/mrd.22939
|
9 |
SADOUL K, BOYAULT C, PABION M, et al. Regulation of protein turnover by acetyltransferases and deacetylases[J]. Biochimie, 2008, 90(2): 306-312. DOI: 10.1016/j.biochi.2007.06.009
doi: 10.1016/j.biochi.2007.06.009
|
10 |
DE RUIJTER A J M, VAN GENNIP A H, CARON H N, et al. Histone deacetylases (HDACs): characterization of the classical HDAC family[J]. The Biochemical Journal, 2003, 370(Pt 3): 737-749. DOI: 10.1042/BJ20021321
doi: 10.1042/BJ20021321
|
11 |
YANG X J, SETO E. The Rpd3/Hda1 family of lysine deacety-lases: from bacteria and yeast to mice and men[J]. Nature Reviews Molecular Cell Biology, 2008, 9(3): 206-218. DOI: 10.1038/nrm2346
doi: 10.1038/nrm2346
|
12 |
GAO L, CUETO M A, ASSELBERGS F, et al. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family[J]. The Journal of Biological Chemistry, 2002, 277(28): 25748-25755. DOI: 10.1074/jbc.M111871200
doi: 10.1074/jbc.M111871200
|
13 |
ZAWARE N, ZHOU M M. Bromodomain biology and drug discovery[J]. Nature Structural & Molecular Biology, 2019, 26(10): 870-879. DOI: 10.1038/s41594-019-0309-8
doi: 10.1038/s41594-019-0309-8
|
14 |
LI Y Y, WEN H, XI Y X, et al. AF9 YEATS domain links histone acetylation to DOT1L-mediated H3K79 methylation[J]. Cell, 2014, 159(3): 558-571. DOI: 10.1016/j.cell.2014.09.049
doi: 10.1016/j.cell.2014.09.049
|
15 |
HE Z X, WEI B F, ZHANG X, et al. Current development of CBP/p300 inhibitors in the last decade[J]. European Journal of Medicinal Chemistry, 2021, 209: 112861. DOI: 10.1016/j.ejmech.2020.112861
doi: 10.1016/j.ejmech.2020.112861
|
16 |
KALKHOVEN E. CBP and p300: HATs for different occasions[J]. Biochemical Pharmacology, 2004, 68(6): 1145-1155. DOI: 10.1016/j.bcp.2004.03.045
doi: 10.1016/j.bcp.2004.03.045
|
17 |
DRAZIC A, MYKLEBUST L M, REE R, et al. The world of protein acetylation[J]. Biochimica et Biophysica Acta (BBA)—Proteins and Proteomics, 2016, 1864(10): 1372-1401. DOI: 10.1016/j.bbapap.2016.06.007
doi: 10.1016/j.bbapap.2016.06.007
|
18 |
WEINERT B T, NARITA T, SATPATHY S, et al. Time-resolved analysis reveals rapid dynamics and broad scope of the CBP/p300 acetylome[J]. Cell, 2018, 174(1): 231-244. DOI: 10.1016/j.cell.2018.04.033
doi: 10.1016/j.cell.2018.04.033
|
19 |
WANG M, CHEN Z Y, ZHANG Y. CBP/p300 and HDAC activities regulate H3K27 acetylation dynamics and zygotic genome activation in mouse preimplantation embryos[J]. The EMBO Journal, 2022, 41(22): e112012. DOI: 10.15252/embj.2022112012
doi: 10.15252/embj.2022112012
|
20 |
ESPINOLA-LOPEZ J M, TAN S. The Ada2/Ada3/Gcn5/Sgf29 histone acetyltransferase module[J]. Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms, 2021, 1864(2): 194629. DOI: 10.1016/j.bbagrm.2020.194629
doi: 10.1016/j.bbagrm.2020.194629
|
21 |
YAMAUCHI T, YAMAUCHI J, KUWATA T, et al. Distinct but overlapping roles of histone acetylase PCAF and of the closely related PCAF-B/GCN5 in mouse embryogenesis[J]. PNAS, 2000, 97(21): 11303-11306.
|
22 |
MUSTACHIO L M, ROSZIK J, FARRIA A, et al. Targeting the SAGA and ATAC transcriptional coactivator complexes in MYC-driven cancers[J]. Cancer Research, 2020, 80(10): 1905-1911. DOI: 10.1158/0008-5472.CAN-19-3652
doi: 10.1158/0008-5472.CAN-19-3652
|
23 |
张赫,张士猛,周平坤.乙酰基转移酶Tip60(KAT5)的功能研究进展[J].生物化学与生物物理进展,2015,42(1):25-31. DOI:10.3724/SP.J.1206.2014.00042 ZHANG H, ZHANG S M, ZHOU P K. Function research of acetyltransferase Tip60(KAT5)[J]. Progress in Biochemistry and Biophysics, 2015, 42(1): 25-31. (in Chinese with English abstract)
doi: 10.3724/SP.J.1206.2014.00042
|
24 |
MIR U S, BHAT A, MUSHTAQ A, et al. Role of histone acetyltransferases MOF and Tip60 in genome stability[J]. DNA Repair, 2021, 107: 103205. DOI: 10.1016/j.dnarep.2021.103205
doi: 10.1016/j.dnarep.2021.103205
|
25 |
罗乐,刘晓燕,刘麟,等.Tip60调控DNA作用对胚胎发育中的影响及作用机制[J].海南医学院学报,2020,26(4):257-261. DOI:10.13210/j.cnki.jhmu.20200213.001 LUO L, LIU X Y, LIU L, et al. The effect and mechanism of Tip60 regulating DNA on embryo development[J]. Journal of Hainan Medical University, 2020, 26(4): 257-261. (in Chinese with English abstract)
doi: 10.13210/j.cnki.jhmu.20200213.001
|
26 |
GUO J, ZHOU W J, NIU Y J, et al. TIP60 contributes to porcine embryonic development by regulating DNA damage response[J]. Theriogenology, 2018, 108: 146-152. DOI: 10.1016/j.theriogenology.2017.11.033
doi: 10.1016/j.theriogenology.2017.11.033
|
27 |
KELLY R D W, CHANDRU A, WATSON P J, et al. Histone deacetylase (HDAC) 1 and 2 complexes regulate both histone acetylation and crotonylation in vivo [J]. Scientific Reports, 2018, 8: 14690. DOI: 10.1038/s41598-018-32927-9
doi: 10.1038/s41598-018-32927-9
|
28 |
DANG Y N, LI S, ZHAO P P, et al. The lysine deacetylase activity of histone deacetylases 1 and 2 is required to safeguard zygotic genome activation in mice and cattle[J]. Development, 2022, 149(11): dev200854. DOI: 10.1242/dev.200854
doi: 10.1242/dev.200854
|
29 |
CHOI S H, GEARHART M D, CUI Z Y, et al. DUX4 recruits p300/CBP through its C-terminus and induces global H3K27 acetylation changes[J]. Nucleic Acids Research, 2016, 44(11): 5161-5173. DOI: 10.1093/nar/gkw141
doi: 10.1093/nar/gkw141
|
30 |
HASSIG C A, TONG J K, FLEISCHER T C, et al. A role for histone deacetylase activity in HDAC1-mediated transcriptional repression[J]. PNAS, 1998, 95(7): 3519-3524.
|
31 |
KURITA M, HOLLOWAY T, GARCÍA-BEA A, et al. HDAC2 regulates atypical antipsychotic responses through the modu-lation of mGlu2 promoter activity[J]. Nature Neuroscience, 2012, 15(9): 1245-1254. DOI: 10.1038/nn.3181
doi: 10.1038/nn.3181
|
32 |
ZENG F Y, SCHULTZ R M. RNA transcript profiling during zygotic gene activation in the preimplantation mouse embryo[J]. Developmental Biology, 2005, 283(1): 40-57. DOI: 10.1016/j.ydbio.2005.03.038
doi: 10.1016/j.ydbio.2005.03.038
|
33 |
ZHAO P P, WANG H N, WANG H, et al. Essential roles of HDAC1 and 2 in lineage development and genome-wide DNA methylation during mouse preimplantation development[J]. Epigenetics, 2020, 15(4): 369-385. DOI: 10.1080/15592294.2019.1669375
doi: 10.1080/15592294.2019.1669375
|
34 |
KRUISWIJK F, LABUSCHAGNE C F, VOUSDEN K H. p53 in survival, death and metabolic health: a lifeguard with a licence to kill[J]. Nature Reviews Molecular Cell Biology, 2015, 16(7): 393-405. DOI: 10.1038/nrm4007
doi: 10.1038/nrm4007
|
35 |
MA P P, SCHULTZ R M. Histone deacetylase 1 (HDAC1) regulates histone acetylation, development, and gene expression in preimplantation mouse embryos[J]. Developmental Biology, 2008, 319(1): 110-120. DOI: 10.1016/j.ydbio.2008.04.011
doi: 10.1016/j.ydbio.2008.04.011
|
36 |
LAUGESEN A, HELIN K. Chromatin repressive complexes in stem cells, development, and cancer[J]. Cell Stem Cell, 2014, 14(6): 735-751. DOI: 10.1016/j.stem.2014.05.006
doi: 10.1016/j.stem.2014.05.006
|
37 |
XUE Z G, HUANG K, CAI C C, et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing[J]. Nature, 2013, 500(7464): 593-597. DOI: 10.1038/nature12364
doi: 10.1038/nature12364
|
38 |
ZHAO P P, LI S, WANG H N, et al. Sin3a regulates the developmental progression through morula-to-blastocyst transition via Hdac1[J]. The FASEB Journal, 2019, 33(11): 12541-12553. DOI: 10.1096/fj.201901213R
doi: 10.1096/fj.201901213R
|
39 |
LUO L, DANG Y N, SHI Y, et al. SIN3A regulates porcine early embryonic development by modulating CCNB1 expression[J]. Frontiers in Cell and Developmental Biology, 2021, 9: 604232. DOI: 10.3389/fcell.2021.604232
doi: 10.3389/fcell.2021.604232
|
40 |
STRAUSS B, HARRISON A, COELHO P A, et al. Cyclin B1 is essential for mitosis in mouse embryos, and its nuclear export sets the time for mitosis[J]. The Journal of Cell Biology, 2018, 217(1): 179-193. DOI: 10.1083/jcb.201612147
doi: 10.1083/jcb.201612147
|
41 |
ZHANG D X, CUI X S, KIM N H. Molecular characterization and polyadenylation-regulated expression of cyclin B1 and Cdc2 in porcine oocytes and early parthenotes[J]. Molecular Reproduction and Development, 2010, 77(1): 38-50. DOI: 10.1002/mrd.21095
doi: 10.1002/mrd.21095
|
42 |
ALLAND L, DAVID G, SHEN-LI H, et al. Identification of mammalian Sds3 as an integral component of the Sin3/histone deacetylase corepressor complex[J]. Molecular and Cellular Biology, 2002, 22(8): 2743-2750. DOI: 10.1128/MCB.22.8.2743-2750.2002
doi: 10.1128/MCB.22.8.2743-2750.2002
|
43 |
ZHANG K, DAI X P, WALLINGFORD M C, et al. Depletion of Suds3 reveals an essential role in early lineage specification[J]. Developmental Biology, 2013, 373(2): 359-372. DOI: 10.1016/j.ydbio.2012.10.026
doi: 10.1016/j.ydbio.2012.10.026
|
44 |
ROSSANT J. Genetic control of early cell lineages in the mammalian embryo[J]. Annual Review of Genetics, 2018, 52: 185-201. DOI: 10.1146/annurev-genet-120116-024544
doi: 10.1146/annurev-genet-120116-024544
|
45 |
GUO G J, HUSS M, TONG G Q, et al. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst[J]. Developmental Cell, 2010, 18(4): 675-685. DOI: 10.1016/j.devcel.2010.02.012
doi: 10.1016/j.devcel.2010.02.012
|
46 |
DIETRICH J E, HIIRAGI T. Stochastic patterning in the mouse pre-implantation embryo[J]. Development, 2007, 134(23): 4219-4231. DOI: 10.1242/dev.003798
doi: 10.1242/dev.003798
|
47 |
NIAKAN K K, JI H K, MAEHR R, et al. Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal[J]. Genes & Development, 2010, 24(3): 312-326. DOI: 10.1101/gad.1833510
doi: 10.1101/gad.1833510
|
48 |
KUNATH T, SABA-EL-LEIL M K, ALMOUSAILLEAKH M, et al. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment[J]. Development, 2007, 134(16): 2895-2902. DOI: 10.1242/dev.02880
doi: 10.1242/dev.02880
|
49 |
LU C W, YABUUCHI A, CHEN L Y, et al. Ras-MAPK signaling promotes trophectoderm formation from embryonic stem cells and mouse embryos[J]. Nature Genetics, 2008, 40(7): 921-926. DOI: 10.1038/ng.173
doi: 10.1038/ng.173
|
50 |
YUAN H, CORBI N, BASILICO C, et al. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3[J]. Genes & Development, 1995, 9(21): 2635-2645.
|
51 |
XIAO L Y, DANG Y N, HU B J, et al. Overlapping functions of RBBP4 and RBBP7 in regulating cell proliferation and histone H3.3 deposition during mouse preimplantation deve-lopment[J]. Epigenetics, 2022, 17(10): 1205-1218. DOI: 10.1080/15592294.2021.1999006
doi: 10.1080/15592294.2021.1999006
|
52 |
HUANG C, ZHU B. H3.3 turnover: a mechanism to poise chromatin for transcription, or a response to open chromatin?[J]. BioEssays, 2014, 36(6): 579-584. DOI: 10.1002/bies.201400005
doi: 10.1002/bies.201400005
|
53 |
CHEN P, ZHAO J C, WANG Y, et al. H3.3 actively marks enhancers and primes gene transcription via opening higher-ordered chromatin[J]. Genes & Development, 2013, 27(19): 2109-2124. DOI: 10.1101/gad.222174.113
doi: 10.1101/gad.222174.113
|
54 |
NEWPORT J, KIRSCHNER M. A major developmental transition in early Xenopus embryos: Ⅱ. Control of the onset of transcription[J]. Cell, 1982, 30(3): 687-696.
|
55 |
CHAN S H, TANG Y, MIAO L Y, et al. Brd4 and P300 confer transcriptional competency during zygotic genome activation[J]. Developmental Cell, 2019, 49(6): 867-881. DOI: 10.1016/j.devcel.2019.05.037
doi: 10.1016/j.devcel.2019.05.037
|
56 |
BOYER L A, LEE T I, COLE M F, et al. Core transcriptional regulatory circuitry in human embryonic stem cells[J]. Cell, 2005, 122(6): 947-956. DOI: 10.1016/j.cell.2005.08.020
doi: 10.1016/j.cell.2005.08.020
|
57 |
MITSUI K, TOKUZAWA Y, ITOH H, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells[J]. Cell, 2003, 113(5): 631-642. DOI: 10.1016/s0092-8674(03)00393-3
doi: 10.1016/s0092-8674(03)00393-3
|
58 |
LIU W, STEIN P, CHENG X, et al. BRD4 regulates Nanog expression in mouse embryonic stem cells and preimplantation embryos[J]. Cell Death & Differentiation, 2014, 21(12): 1950-1960. DOI: 10.1038/cdd.2014.124
doi: 10.1038/cdd.2014.124
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|