Please wait a minute...
浙江大学学报(农业与生命科学版)  2020, Vol. 46 Issue (3): 271-279    DOI: 10.3785/j.issn.1008-9209.2019.06.281
综述     
植物光呼吸途径的调控和优化策略
周天骄(),丁晓辉,王君晖()
浙江大学生命科学学院遗传与再生生物学研究所,杭州 310058
Strategies for modulation and optimization of the photorespiration pathway in plants
Tianjiao ZHOU(),Xiaohui DING,Junhui WANG()
Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2290 KB)   HTML
摘要:

植物的核酮糖-1,5-双磷酸羧化酶/加氧酶(ribulose-1, 5-bisphosphate carboxylase/oxidase, Rubisco)有2种活性:一是羧化作用,同化二氧化碳,为生物圈提供食物;二是氧化作用,消耗同化产物,生成有毒的2-磷酸乙醇酸,启动光呼吸途径。C3植物的光呼吸途径大约消耗了1/3的光合作用产物。但是,直接敲除光呼吸途径的基因不仅不能提高生物量,而且往往是致死的;只有科学优化光呼吸途径才能提高植物生物量和作物产量。本文综述了植物光呼吸途径的功能和基因通路,以及调控和优化光呼吸以提高植物生物量的方法和研究进展。

关键词: 光呼吸C3植物核酮糖-1,5-双磷酸羧化酶/加氧酶甘油酸转运体乙醇酸转化旁路    
Abstract:

Plant ribulose-1, 5-bisphosphate carboxylase/oxidase (Rubisco) has two activities, and the one is carboxylation to assimilate CO2 to produce food for the biosphere, and the other one is oxidation to generate toxic 2-phosphoglycolate to commit the photorespiration pathway. For C3 plants, about 1/3 assimilation products of photosynthesis are used for photorespiration. However, knocking out photorespiration genes directly is unable to improve plant biomass, but also induces lethal phenotypes in most cases. Reasonable optimization of the photorespiration pathway has the potential of large improvements in plant biomass and crop productivity. Here, we review the function and gene loop of the photorespiration pathway, and discuss the approaches to engineer and optimize this pathway to increase crop yields.

Key words: photorespiration    C3 plant    ribulose-1, 5-bisphosphate carboxylase/oxidase (Rubisco)    glycerate transporter    glycolate transformation bypass
收稿日期: 2019-06-28 出版日期: 2020-05-29
CLC:  Q 945.1  
基金资助: 国家自然科学基金(31170211);浙江省自然科学基金(LY18C020001)
通讯作者: 王君晖     E-mail: 937827838@qq.com;junhuiwang@zju.edu.cn
作者简介: 周天骄(https://orcid.org/0000-0002-7457-2680),E-mail:937827838@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周天骄
丁晓辉
王君晖

引用本文:

周天骄,丁晓辉,王君晖. 植物光呼吸途径的调控和优化策略[J]. 浙江大学学报(农业与生命科学版), 2020, 46(3): 271-279.

Tianjiao ZHOU,Xiaohui DING,Junhui WANG. Strategies for modulation and optimization of the photorespiration pathway in plants. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 271-279.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2019.06.281        http://www.zjujournals.com/agr/CN/Y2020/V46/I3/271

图1  植物的光呼吸途径Rubisco:核酮糖-1,5-双磷酸羧化酶/加氧酶;PGLP:2-磷酸乙醇酸磷酸酶;BASS6:胆汁酸/钠转运体;GOX:乙醇酸氧化酶;GGAT:谷氨酸∶乙醛酸氨基转移酶;GDC:甘氨酸脱羧酶复合物(由P、T、H、L蛋白组成);SHMT:丝氨酸羟甲基转移酶;NADH:还原型辅酶Ⅰ;SGAT:丝氨酸∶乙醛酸氨基转移酶;HPR:羟基丙酮酸还原酶;PLGG1:质体乙醇酸/甘油酸转运体;ptGLYK:质体定位甘油酸激酶;cytGLYK:细胞质甘油酸激酶。
图2  3种优化光呼吸途径的方法Rubisco:核酮糖-1,5-双磷酸羧化酶/加氧酶;BASS6:胆汁酸/钠转运体;PLGG1:质体乙醇酸/甘油酸转运体;NADH:还原型辅酶Ⅰ。
1 NISBET E G, GRASSINEAU N V, HOWE C J, et al. The age of Rubisco: the evolution of oxygenic photosynthesis. Geobiology, 2007,5(4):311-335. DOI:10.1111/j.1472-4669.2007.00127.x
doi: 10.1111/j.1472-4669.2007
2 OGREN W L, BOWES G. Ribulose diphosphate carboxylase regulates soybean photorespiration. Nature New Biology, 1971,230(13):159-160.
3 KELLY G J, LATZKO E. Inhibition of spinach leaf phosphofructokinase by 2-phosphoglycolate. FEBS Letters, 1976,68(1):55-58.
4 GONZáLEZ-MORO B, LACUESTA M, BECERRIL J M, et al. Glycolate accumulation causes a decrease of photosynthesis by inhibiting Rubisco activity in maize. Journal of Plant Physiology, 1997,150(4):388-394.
5 HAGEMANN M, FERNIE A R, ESPIE G S, et al. Evolution of the biochemistry of the photorespiratory C2 cycle. Plant Biology, 2013,15(4):639-647. DOI:10.1111/j.1438-8677.2012.00677.x
doi: 10.1111/j.1438-8677.2012
6 MALLMANN J, HECKMANN D, BRAUTIGAM A, et al. The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria. Elife, 2014,3:e02478.DOI:10.7554/eLife.02478
doi: 10.7554/eLife.02478
7 SHARKEY T D. Estimating the rate of photorespiration in leaves. Physiologia Plantarum, 1988,73(1):147-152.
8 TCHERKEZ G. Is the recovery of (photo) respiratory CO2 and intermediates minimal? New Phytologist, 2013,198(2):334-338. DOI:10.1111/nph.12101
doi: 10.1111/nph.12101
9 SAGE R F, SAGE T L, KOCACINAR F. Photorespiration and the evolution of C4 photosynthesis.Annual Review of Plant Biology, 2012,63(1):19-47. DOI:10.1146/annurev-arplant-042811-105511
doi: 10.1146/annurev-arplant-042811-105511
10 EISENHUT M, PICK T R, BORDYCH C, et al. Towards closing the remaining gaps in photorespiration: the essential but unexplored role of transport proteins. Plant Biology, 2013,15(4):676-685. DOI:10.1111/j.1438-8677.2012.00690.x
doi: 10.1111/j.1438-8677.2012.00690.x
11 PICK T R, BRAUTIGAM A, SCHULZ M A, et al. PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters. PNAS, 2013,110(8):3185-3190. DOI:10.1073/pnas.1215142110
doi: 10.1073/pnas.1215142110
12 SOUTH P F, WALKER B J, CAVANAGH A P, et al. Bile acid sodium symporter BASS6 can transport glycolate and is involved in photorespiratory metabolism in Arabidopsis thaliana. The Plant Cell, 2017,29(4):808-823. DOI:10.1105/tpc.16.00775
doi: 10.1105/tpc.16.00775
13 FOYER C H, BLOOM A J, QUEVAL G, et al. Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annual Review of Plant Biology, 2009,60:455-484. DOI:10.1146/
annurev.arplant.043008.091948
doi: 10.1146/
14 YANG Y J, JIN H Y, CHEN Y, et al. A chloroplast envelope membrane protein containing a putative LrgB domain related to the control of bacterial death and lysis is required for chloroplast development in Arabidopsis thaliana. New Phytologist, 2012,193(1):81-95. DOI:10.1111/j.1469-8137.2011.03867.x
doi: 10.1111/j.1469-8137.2011
15 WANG J H, BAYLES K W. Programmed cell death in plants: lessons from bacteria? Trends in Plant Science, 2013,18(3):133-139. DOI:10.1016/j.tplants.2012.09.004
doi: 10.1016/j.tplants.2012.09.004
16 HOWITZ K T, MCCARTY R E. Substrate-specificity of the pea chloroplast glycolate transporter. Biochemistry, 1985,24(14):3645-3650.
17 HOWITZ K T, MCCARTY R E. D-glycerate transport by the pea chloroplast glycolate carrier: studies on [1-14C] D-glycerate uptake and D-glycerate dependent O2 evolution. Plant Physiology, 1986,80(2):390-395.
18 YAMAGUCHI M, TAKECHI K, MYOUGA F, et al. Loss of the plastid envelope protein AtLrgB causes spontaneous chlorotic cell death in Arabidopsis thaliana. Plant and Cell Physiology, 2012,53(1):125-134. DOI:10.1093/pcp/pcr180
doi: 10.1093/pcp/pcr180
19 SOMERVILLE C R, OGREN W L. A phosphoglycolate phosphatase-deficient mutant of Arabidopsis. Nature, 1979,280(5725):833-836.
20 WALKER B J, SOUTH P F, ORT D R. Physiological evidence for plasticity in glycolate/glycerate transport during photorespiration. Photosynthesis Research, 2016,129(1):93-103. DOI:10.1007/s11120-016-0277-3
doi: 10.1007/s11120-016-0277-3
21 LAXA M, FROMM S. Co-expression and regulation of photorespiratory genes in Arabidopsis thaliana: a bioinformatic approach. Current Plant Biology, 2018,14:2-18. DOI:10.1016/j.cpb.2018.09.001
doi: 10.1016/j.cpb.2018.09.001
22 USHIJIMA T, HANADA K, GOTOH E, et al. Light controls protein localization through phytochrome-mediated alternative promoter selection. Cell, 2017,171(6):1316-1325. DOI:10.1016/j.cell.2017.10.018
doi: 10.1016/j.cell.2017.10.018
23 WINGLER A, LEA P J, QUICK W P, et al. Photorespiration: metabolic pathways and their role in stress protection. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 2000,355(1402):1517-1529. DOI:10.1098/rstb.2000.0712
doi: 10.1098/rstb.2000.0712
24 BAUWE H, HAGEMANN M, FERNIE A R. Photorespiration: players, partners and origin. Trends in Plant Science, 2010,15(6):330-336. DOI:10.1016/j.tplants.2010.03.006
doi: 10.1016/j.tplants.2010.03.006
25 TIMM S, MIELEWCZIK M, FLORIAN A, et al. High-to-low CO2 acclimation reveals plasticity of the photorespiratory pathway and indicates regulatory links to cellular metabolism of Arabidopsis. PLoS One, 2012,7(8):e42809. DOI:10.1371/journal.pone.0042809
doi: 10.1371/journal.pone.0042809
26 BLOOM A J. Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen. Photosynthesis Research, 2015,123(2):117-128. DOI:10.1007/s11120-014-0056-y
doi: 10.1007/s11120-014-0056-y
27 OBATA T, FLORIAN A, TIMM S, et al. On the metabolic interactions of (photo) respiration. Journal of Experimental Botany, 2016,67(10):3003-3014. DOI:10.1093/jxb/erw128
doi: 10.1093/jxb/erw128
28 HODGES M, DELLERO Y, KEECH O, et al. Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network. Journal of Experimental Botany, 2016,67(10):3015-3026. DOI:10.1093/jxb/erw145
doi: 10.1093/jxb/erw145
29 SAMUILOV S, BRILHAUS D, RADEMACHER N, et al. The photorespiratory BOU gene mutation alters sulfur assimilation and its crosstalk with carbon and nitrogen metabolism in Arabidopsis thaliana. Frontiers in Plant Science, 2018,9:1709. DOI:10.3389/fpls.2018.01709
doi: 10.3389/fpls.2018.01709
30 SOUTH P F, CAVANAGH A P, LIU H W, et al. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science, 2019,363(6422):45. DOI:10.1126/science.aat9077
doi: 10.1126/science.aat9077
31 WALKER B J, VANLOOCKE A, BERNACCHI C J, et al. The costs of photorespiration to food production now and in the future. Annual Review of Plant Biology, 2016,67:107-129. DOI:10.1146/annurev-arplant-043015-111709
doi: 10.1146/annurev-arplant-043015-111709
32 PETERHANSEL C, NIESSEN M, KEBEISH R M. Metabolic engineering towards the enhancement of photosynthesis. Photochemistry and Photobiology, 2008,84(6):1317-1323. DOI:10.1111/j.1751-1097.2008.00427.x
doi: 10.1111/j.1751-1097.2008.00427.x
33 CARMO-SILVA E, SCALES J C, MADGWICK P J, et al. Optimizing Rubisco and its regulation for greater resource use efficiency. Plant, Cell and Environment, 2015,38(9):1817-1832. DOI:10.1111/pce.12425
doi: 10.1111/pce.12425
34 SOMERVILLE C R, OGREN W L. Genetic modification of photorespiration. Trends in Biochemical Sciences, 1982,7(5):171-174.
35 ZHU X G, PORTIS A R, LONG S P. Would transformation of C3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant, Cell and Environment, 2004,27(2):155-165.
36 MUELLER-CAJAR O, WHITNEY S M. Directing the evolution of Rubisco and Rubisco activase: first impressions of a new tool for photosynthesis research. Photosynthesis Research, 2008,98(1/2/3):667-675. DOI:10.1007/s11120-008-9324-z
doi: 10.1007/s11120-008-9324-z
37 BATHELLIER C, TCHERKEZ G, LORIMER G H, et al. Rubisco is not really so bad. Plant, Cell and Environment, 2018,41(4):705-716. DOI:10.1111/pce.13149
doi: 10.1111/pce.13149
38 TCHERKEZ G G B, FARQUHAR G D, ANDREWS T J. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. PNAS, 2006,103(19):7246-7251. DOI:10.1073/pnas.0600605103
doi: 10.1073/pnas.0600605103
39 SAVIR Y, NOOR E, MILO R, et al. Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape. PNAS, 2010,107(8):3475-3480. DOI:10.1073/pnas.0911663107
doi: 10.1073/pnas.0911663107
40 YOUNG J N, HEUREUX A M C, SHARWOOD R E, et al. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms. Journal of Experimental Botany, 2016,67(11):3445-3456. DOI:10.1093/jxb/erw163
doi: 10.1093/jxb/erw163
41 WHITNEY S M, ANDREWS T J. Plastome-encoded bacterial ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) supports photosynthesis and growth in tobacco. PNAS, 2001,98(25):14738-14743. DOI:10.1073/pnas.261417298
doi: 10.1073/pnas.261417298
42 LIN M T, OCCHIALINI A, ANDRALOJC P J, et al. A faster Rubisco with potential to increase photosynthesis in crops. Nature, 2014,513(7519):547-550. DOI:10.1038/nature13776
doi: 10.1038/nature13776
43 OCCHIALINI A, LIN M T, ANDRALOJC P J, et al. Transgenic tobacco plants with improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild-type rates if provided with elevated CO2. The Plant Journal, 2016,85(1):148-160. DOI:10.1111/tpj.13098
doi: 10.1111/tpj.13098
44 ERB T J, ZARZYCKI J. Biochemical and synthetic biology approaches to improve photosynthetic CO2-fixation. Current Opinion in Chemical Biology, 2016,34:72-79. DOI:10.1016/j.cbpa.2016.06.026
doi: 10.1016/j.cbpa.2016.06.026
45 RAE B D, LONG B M, F?RSTER B, et al. Progress and challenges of engineering a biophysical CO2-concentrating mechanism into higher plants. Journal of Experimental Botany, 2017,68(14):3717-3737. DOI:10.1093/jxb/erx133
doi: 10.1093/jxb/erx133
46 KINNEY J N, AXEN S D, KERFELD C A. Comparative analysis of carboxysome shell proteins. Photosynthesis Research, 2011,109(1/2/3):21-32. DOI:10.1007/s11120-011-9624-6
doi: 10.1007/s11120-011-9624-6
47 SINETOVA M A, KUPRIYANOVA E V, MARKELOVA A G, et al. Identification and functional role of the carbonic anhydrase Cah3 in thylakoid membranes of pyrenoid of Chlamydomonas reinhardtii. Biochimica Et Biophysica Acta-Bioenergetics, 2012,1817(8):1248-1255. DOI:10.1016/j.bbabio.2012.02.014
doi: 10.1016/j.bbabio
48 NIEDERHUBER M J, LAMBERT T J, YAPP C, et al. Superresolution microscopy of the β-carboxysome reveals a homogeneous matrix. Molecular Biology of the Cell, 2017,28(20):2734-2745. DOI:10.1091/mbc.E17-01-0069
doi: 10.1091/mbc.E17-01-0069
49 SHARWOOD R E. A step forward to building an algal pyrenoid in higher plants. New Phytologist, 2017,214(2):496-499. DOI:10.1111/nph.14514
doi: 10.1111/nph.14514
50 SOMMER M, CAI F, MELNICKI M, et al. β-carboxysome bioinformatics: identification and evolution of new bacterial microcompartment protein gene classes and core locus constraints. Journal of Experimental Botany, 2017,68(14):3841-3855. DOI: 10.1093/jxb/erx115
doi: 10.1093/jxb/erx115
51 WOODGER F J, BADGER M R, PRICE G D. Sensing of inorganic carbon limitation in Synechococcus PCC7942 is correlated with the size of the internal inorganic carbon pool and involves oxygen. Plant Physiology, 2005,139(4):1959-1969. DOI:10.1104/pp.105.069146
doi: 10.1104/pp.105.069146
52 BADGER M R, PRICE G D. CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. Journal of Experimental Botany, 2003,54(383):609-622. DOI:10.1093/jxb/erg076
doi: 10.1093/jxb/erg076
53 MCGRATH J M, LONG S P. Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? A theoretical analysis. Plant Physiology, 2014,164(4):2247-2261. DOI:10.1104/pp.113.232611
doi: 10.1104/pp.113.232611
54 LONG B M, RAE B D, ROLLAND V, et al. Cyanobacterial CO2-concentrating mechanism components: function and prospects for plant metabolic engineering. Current Opinion in Plant Biology, 2016,31:1-8. DOI:10.1016/j.pbi.2016.03.002
doi: 10.1016/j.pbi.2016.03.002
55 BONACCI W, TENG P K, AFONSO B, et al. Modularity of a carbon-fixing protein organelle. PNAS, 2012,109(2):478-483. DOI:10.1073/pnas.1108557109
doi: 10.1073/pnas.1108557109
56 LIN M T, OCCHIALINI A, ANDRALOJC P J, et al.β-carboxysomal proteins assemble into highly organized structures in Nicotiana chloroplasts. The Plant Journal, 2014,79(1):1-12. DOI:10.1111/tpj.12536
doi: 10.1111/tpj.12536
57 HANSON M R, LIN M T, CARMO-SILVA E, et al. Towards engineering carboxysomes into C3 plants. The Plant Journal, 2016,87(1):38-50. DOI:10.1111/tpj.13139
doi: 10.1111/tpj.13139
58 HAGEMANN M, BAUWE H. Photorespiration and the potential to improve photosynthesis. Current Opinion in Chemical Biology, 2016,35:109-116. DOI:10.1016/j.cbpa.2016.09.014
doi: 10.1016/j.cbpa.2016
59 TIMM S, FLORIAN A, ARRIVAULT S, et al. Glycine decarboxylase controls photosynthesis and plant growth. FEBS Letters, 2012,586(20):3692-3697. DOI:10.1016/j.febslet.2012.08.027
doi: 10.1016/j.febslet
60 TIMM S, WITTMI? M, GAMLIEN S, et al. Mitochondrial dihydrolipoyl dehydrogenase activity shapes photosynthesis and photorespiration of Arabidopsis thaliana. The Plant Cell, 2015,27(7):1968-1984. DOI:10.1105/tpc.15.00105
doi: 10.1105/tpc.15.00105
61 SIMKIN A J, LOPEZ-CALCAGNO P E, DAVEY P A, et al. Simultaneous stimulation of sedoheptulose 1, 7-bisphosphatase, fructose 1, 6-bisphophate aldolase and the photorespiratory glycine decarboxylase-H protein increases CO2 assimilation, vegetative biomass and seed yield in Arabidopsis. Plant Biotechnology Journal, 2017,15(7):805-816. DOI:10.1111/pbi.12676
doi: 10.1111/pbi
62 LóPEZ-CALCAGNO P E, FISK S, BROWN K L, et al. Overexpressing the H-protein of the glycine cleavage system increases biomass yield in glasshouse and field-grown transgenic tobacco plants. Plant Biotechnology Journal, 2019,17(1):141-151. DOI:10.1111/pbi.12953
doi: 10.1111/pbi.12953
63 TIMM S, GIESE J, ENGEL N, et al. T-protein is present in large excess over the other proteins of the glycine cleavage system in leaves of Arabidopsis. Planta, 2018,247(1):41-51. DOI:10.1007/s00425-017-2767-8
doi: 10.1007/s00425-017-2767-8
64 WU J X, ZHANG Z G, ZHANG Q, et al. The molecular cloning and clarification of a photorespiratory mutant, oscdm1, using enhancer trapping. Frontiers in Genetics, 2015,6:226.DOI:10.3389/fgene.2015.00226
doi: 10.3389/fgene.2015.00226
65 TIMM S, FLORIAN A, WITTMI? M, et al. Serine acts as a metabolic signal for the transcriptional control of photorespiration-related genes in Arabidopsis. Plant Physiology, 2013,162(1):379-389. DOI:10.1104/pp.113.215970
doi: 10.1104/pp.113.215970
66 MODDE K, TIMM S, FLORIAN A, et al. High serine:glyoxylate aminotransferase activity lowers leaf daytime serine levels, inducing the phosphoserine pathway in Arabidopsis. Journal of Experimental Botany, 2017,68(3):643-656. DOI:10.1093/jxb/erw467
doi: 10.1093/jxb/erw467
67 KEBEISH R, NIESSEN M, THIRUVEEDHI K, et al. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nature Biotechnology, 2007,25(5):593-599. DOI:10.1038/nbt1299
doi: 10.1038/nbt1299
68 N?LKE G, HOUDELET M, KREUZALER F, et al. The expression of a recombinant glycolate dehydrogenase polyprotein in potato (Solanum tuberosum) plastids strongly enhances photosynthesis and tuber yield. Plant Biotechnology Journal, 2014,12(6):734-742. DOI:10.1111/pbi.12178
doi: 10.1111/pbi.12178
69 DALAL J, LOPEZ H, VASANI N B, et al. A photo-respiratory bypass increases plant growth and seed yield in biofuel crop Camelina sativa. Biotechnology for Biofuels, 2015,8:175. DOI:10.1186/s13068-015-0357-1
doi: 10.1186/s13068-015-0357-1
70 CARVALHO J D C, MADGWICK P J, POWERS S J, et al. An engineered pathway for glyoxylate metabolism in tobacco plants aimed to avoid the release of ammonia in photorespiration. BMC Biotechnology, 2011,11:111. DOI: 10.1186/1472-6750-11-111
doi: 10.1186/
71 PETERHANSEL C, BLUME C, OFFERMANN S. Photo-respiratory bypasses: How can they work? Journal of Experi-mental Botany, 2013,64(3):709-715. DOI:10.1093/jxb/ers247
doi: 10.1093/jxb/ers247
[1] 李波, 徐婉玉, 石善亮 . 聚乙二醇渗透胁迫对苜蓿幼苗营养器官离子含量的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(1): 65-72.
[2] 刘于, 王伏林, 刘仁虎. 甘蓝型油菜黄籽突变对含油量和蛋白质含量的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(1): 37-44.
[3] . 不同菠菜基因型氮素吸收与利用效率的差异及其评价[J]. 浙江大学学报(农业与生命科学版), 2012, 38(5): 599-607.
[4] . 2种大型丛生竹对氮输入的可塑性响应[J]. 浙江大学学报(农业与生命科学版), 2012, 38(5): 608-613.
[5] 刘剑锋, 程云清, 刘强, 王占武, 颜堃. 平榛与平欧杂交榛叶片光合特征[J]. 浙江大学学报(农业与生命科学版), 2012, 38(4): 413-420.