Please wait a minute...
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology)  2017, Vol. 18 Issue (5): 365-372    DOI: 10.1631/jzus.B1600579
Review     
DNA methylation in the tumor microenvironment
Meng-wen Zhang, Kenji Fujiwara, Xu Che, Shu Zheng, Lei Zheng
The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou 310009, China; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21231, USA; The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore 21231, USA
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  The tumor microenvironment (TME) plays an important role in supporting cancer progression. The TME is composed of tumor cells, the surrounding tumor-associated stromal cells, and the extracellular matrix (ECM). Crosstalk between the TME components contributes to tumorigenesis. Recently, one of our studies showed that pancreatic ductal adenocarcinoma (PDAC) cells can induce DNA methylation in cancer-associated fibroblasts (CAFs), thereby modifying tumor-stromal interactions in the TME, and subsequently creating a TME that supports tumor growth. Here we summarize recent studies about how DNA methylation affects tumorigenesis through regulating tumor-associated stromal components including fibroblasts and immune cells. We also discuss the potential for targeting DNA methylation for the treatment of cancers.

Key wordsTumor microenvironment (TME)      DNA methylation      Cancer-associated fibroblasts      Cancer-associated immune cells      Epigenetic therapy     
Received: 19 December 2016      Published: 04 May 2017
CLC:  R730.231  
Cite this article:

Meng-wen Zhang, Kenji Fujiwara, Xu Che, Shu Zheng, Lei Zheng. DNA methylation in the tumor microenvironment. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2017, 18(5): 365-372.

URL:

http://www.zjujournals.com/xueshu/zjus-b/10.1631/jzus.B1600579     OR     http://www.zjujournals.com/xueshu/zjus-b/Y2017/V18/I5/365


肿瘤微环境中的甲基化调节机制

概要:肿瘤微环境主要由肿瘤细胞、肿瘤相关间质细胞及细胞外基质组成。肿瘤细胞通过多种方式调控肿瘤微环境中的间质细胞,诱导间质细胞分化并发挥促肿瘤的作用,从而为肿瘤的生长及转移创造一个适宜的环境。DNA甲基化异常是肿瘤的特点。目前关于肿瘤的甲基化调控机制已有大量报道,对于肿瘤细胞与微环境中间质细胞的相互作用机制也有了一些报道。然而,关于肿瘤细胞对微环境间质细胞的甲基化调控机制以及这种调控对肿瘤发生发展的影响并没有系统的论述。本综述总结了肿瘤细胞对微环境中间质细胞甲基化调控机制的最新研究进展,以及间质细胞发生的一些促肿瘤改变,从而全面阐释了肿瘤细胞和间质细胞间的相互作用,同时总结了肿瘤细胞对肿瘤微环境的表观遗传学调控,尤其是甲基化调控在肿瘤进展中发挥了重要的作用。干预肿瘤细胞对微环境中间质细胞的甲基化调节过程,可以发挥抗肿瘤的作用。

关键词: 肿瘤微环境,  DNA甲基化,  肿瘤相关成纤维细胞,  肿瘤相关免疫细胞,  表观遗传学治疗 
[1]   Ahmed, S.F., Farquharson, C., 2010. The effect of GH and IGF1 on linear growth and skeletal development and their modulation by SOCS proteins. J. Endocrinol., 206(3): 249-259.
doi: 10.1677/JOE-10-0045
[2]   Albrengues, J., Bertero, T., Grasset, E., et al., 2015. Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts. Nat. Commun., 6:10204.
doi: 10.1038/ncomms10204
[3]   Amodio, N., Bellizzi, D., Leotta, M., et al., 2013. miR-29b induces SOCS-1 expression by promoter demethylation and negatively regulates migration of multiple myeloma and endothelial cells. Cell Cycle, 12(23):3650-3662.
doi: 10.4161/cc.26585
[4]   Batarseh, K.I., 2013. Antineoplastic activities, apoptotic mechanism of action and structural properties of a novel silver(I) chelate. Curr. Med. Chem., 20(18):2363-2373.
doi: 10.2174/0929867311320180007
[5]   Berraondo, P., Minute, L., Ajona, D., et al., 2016. Innate immune mediators in cancer: between defense and resistance. Immunol. Rev., 274(1):290-306.
doi: 10.1111/imr.12464
[6]   Bian, E.B., Huang, C., Ma, T.T., et al., 2012. DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats. Toxicol. Appl. Pharmacol., 264(1):13-22.
doi: 10.1016/j.taap.2012.06.022
[7]   Bird, A., 2007. Perceptions of epigenetics. Nature, 447(7143): 396-398.
doi: 10.1038/nature05913
[8]   Bock, C., Beerman, I., Lien, W.H., et al., 2012. DNA methylation dynamics during in vivo differentiation of blood and skin stem cells. Mol. Cell, 47(4):633-647.
doi: 10.1016/j.molcel.2012.06.019
[9]   Broske, A.M., Vockentanz, L., Kharazi, S., et al., 2009. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat. Genet., 41(11): 1207-1215.
doi: 10.1038/ng.463
[10]   Cheung, P., Allis, C.D., Sassone-Corsi, P., 2000. Signaling to chromatin through histone modifications. Cell, 103(2): 263-271.
doi: 10.1016/S0092-8674(00)00118-5
[11]   Chiappinelli, K.B., Zahnow, C.A., Ahuja, N., et al., 2016. Combining epigenetic and immunotherapy to combat cancer. Cancer Res., 76(7):1683-1689.
doi: 10.1158/0008-5472.CAN-15-2125
[12]   Cui, H., Onyango, P., Brandenburg, S., et al., 2002. Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer Res., 62(22):6442-6446.
[13]   Dedeurwaerder, S., Desmedt, C., Calonne, E., et al., 2011. DNA methylation profiling reveals a predominant immune component in breast cancers. EMBO Mol. Med., 3(12):726-741.
doi: 10.1002/emmm.201100801
[14]   de Wever, O., Demetter, P., Mareel, M., et al., 2008. Stromal myofibroblasts are drivers of invasive cancer growth. Int. J. Cancer, 123(10):2229-2238.
doi: 10.1002/ijc.23925
[15]   Easwaran, H., Tsai, H.C., Baylin, S.B., 2014. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol. Cell, 54(5):716-727.
doi: 10.1016/j.molcel.2014.05.015
[16]   El Taghdouini, A., Sorensen, A.L., Reiner, A.H., et al., 2015. Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human liver cells and activated hepatic stellate cells. Oncotarget, 6(29):26729-26745.
doi: 10.18632/oncotarget.4925
[17]   Esteller, M., 2007. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet., 8(4): 286-298.
doi: 10.1038/nrg2005
[18]   Feig, C., Gopinathan, A., Neesse, A., et al., 2012. The pancreas cancer microenvironment. Clin. Cancer Res., 18(16): 4266-4276.
doi: 10.1158/1078-0432.CCR-11-3114
[19]   Garzon, R., Calin, G.A., Croce, C.M., 2009. MicroRNAs in Cancer. Annu. Rev. Med., 60(1):167-179.
doi: 10.1146/annurev.med.59.053006.104707
[20]   Gascard, P., Tlsty, T.D., 2016. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev., 30(9):1002-1019.
doi: 10.1101/gad.279737.116
[21]   Gibb, E.A., Brown, C.J., Lam, W.L., 2011. The functional role of long non-coding RNA in human carcinomas. Mol. Cancer, 10(1):38.
doi: 10.1186/1476-4598-10-38
[22]   Gotze, S., Schumacher, E.C., Kordes, C., et al., 2015. Epigenetic changes during hepatic stellate cell activation. PLoS ONE, 10(6):e0128745.
doi: 10.1371/journal.pone.0128745
[23]   Gronbaek, K., Hother, C., Jones, P.A., 2007. Epigenetic changes in cancer. APMIS, 115(10):1039-1059.
doi: 10.1111/j.1600-0463.2007.apm_636.xml.x
[24]   Hanahan, D., Weinberg, R.A., 2011. Hallmarks of cancer: the next generation. Cell, 144(5):646-674.
doi: 10.1016/j.cell.2011.02.013
[25]   Hinz, B., Phan, S.H., Thannickal, V.J., et al., 2007. The myofibroblast: one function, multiple origins. Am. J. Pathol., 170(6):1807-1816.
doi: 10.2353/ajpath.2007.070112
[26]   Iba, K., Albrechtsen, R., Gilpin, B.J., et al., 1999. Cysteine-rich domain of human ADAM 12 (meltrin α) supports tumor cell adhesion. Am. J. Pathol., 154(5):1489-1501.
doi: 10.1016/S0002-9440(10)65403-X
[27]   Iorio, M.V., Piovan, C., Croce, C.M., 2010. Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim. Biophys. Acta, 1799(10-12):694-701.
doi: 10.1016/j.bbagrm.2010.05.005
[28]   Ishii, G., Ochiai, A., Neri, S., 2016. Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv. Drug Deliv. Rev., 99(Pt B): 186-196.
doi: 10.1016/j.addr.2015.07.007
[29]   Janson, P.C., Marits, P., Thorn, M., et al., 2008. CpG methylation of the IFNG gene as a mechanism to induce immunosuppression in tumor-infiltrating lymphocytes. J. Immunol., 181(4):2878-2886.
doi: 10.4049/jimmunol.181.4.2878
[30]   Jiang, L., Gonda, T.A., Gamble, M.V., et al., 2008. Global hypomethylation of genomic DNA in cancer-associated myofibroblasts. Cancer Res., 68(23):9900-9908.
doi: 10.1158/0008-5472.CAN-08-1319
[31]   Karagiannis, G.S., Poutahidis, T., Erdman, S.E., et al., 2012. Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol. Cancer Res., 10(11):1403-1418.
doi: 10.1158/1541-7786.MCR-12-0307
[32]   Ke, X., Zhang, S., Xu, J., et al., 2016. Non-small-cell lung cancer-induced immunosuppression by increased human regulatory T cells via Foxp3 promoter demethylation. Cancer Immunol. Immunother., 65(5):587-599.
doi: 10.1007/s00262-016-1825-6
[33]   Kouzarides, T., 2007. Chromatin modifications and their function. Cell, 128(4):693-705.
doi: 10.1016/j.cell.2007.02.005
[34]   Ling, H., Spizzo, R., Atlasi, Y., et al., 2013. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res., 23(9):1446-1461.
doi: 10.1101/gr.152942.112
[35]   Liu, H.X., Li, X.L., Dong, C.F., 2015. Epigenetic and metabolic regulation of breast cancer stem cells. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(1):10-17.
doi: 10.1631/jzus.B1400172
[36]   Luperchio, T.R., Wong, X., Reddy, K.L., 2014. Genome regulation at the peripheral zone: lamina associated domains in development and disease. Curr. Opin. Genet. Dev., 25: 50-61.
doi: 10.1016/j.gde.2013.11.021
[37]   Mann, J., Chu, D.C., Maxwell, A., et al., 2010. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology, 138(2): 705-714.
doi: 10.1053/j.gastro.2009.10.002
[38]   Mueller, M.M., Fusenig, N.E., 2004. Friends or foes—bipolar effects of the tumour stroma in cancer. Nat. Rev. Cancer, 4(11):839-849.
doi: 10.1038/nrc1477
[39]   Neesse, A., Algul, H., Tuveson, D.A., et al., 2015. Stromal biology and therapy in pancreatic cancer: a changing paradigm. Gut, 64(9):1476-1484.
doi: 10.1136/gutjnl-2015-309304
[40]   Page, A., Paoli, P., Moran, S.E., et al., 2016. Hepatic stellate cell transdifferentiation involves genome-wide remodeling of the DNA methylation landscape. J. Hepatol., 64(3): 661-673.
doi: 10.1016/j.jhep.2015.11.024
[41]   Peric-Hupkes, D., Meuleman, W., Pagie, L., et al., 2010. Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol. Cell, 38(4):603-613.
doi: 10.1016/j.molcel.2010.03.016
[42]   Pinzani, M., Rombouts, K., Colagrande, S., 2005. Fibrosis in chronic liver diseases: diagnosis and management. J. Hepatol., 42(Suppl. 1):S22-S36.
doi: 10.1016/j.jhep.2004.12.008
[43]   Pleyer, L., Greil, R., 2015. Digging deep into “dirty” drugs— modulation of the methylation machinery. Drug Metab. Rev., 47(2):252-279.
doi: 10.3109/03602532.2014.995379
[44]   Rabinovich, E.I., Kapetanaki, M.G., Steinfeld, I., et al., 2012. Global methylation patterns in idiopathic pulmonary fibrosis. PLoS ONE, 7(4):e33770.
doi: 10.1371/journal.pone.0033770
[45]   Rucki, A.A., Zheng, L., 2014. Pancreatic cancer stroma: understanding biology leads to new therapeutic strategies. World J. Gastroenterol., 20(9):2237-2246.
doi: 10.3748/wjg.v20.i9.2237
[46]   Schuyler, R.P., Merkel, A., Raineri, E., et al., 2016. Distinct trends of DNA methylation patterning in the innate and adaptive immune systems. Cell Rep., 17(8):2101-2111.
doi: 10.1016/j.celrep.2016.10.054
[47]   Sharma, S., Kelly, T.K., Jones, P.A., 2010. Epigenetics in cancer. Carcinogenesis, 31(1):27-36.
doi: 10.1093/carcin/bgp220
[48]   Sido, J.M., Yang, X., Nagarkatti, P.S., et al., 2015. Δ9-Tetrahydrocannabinol-mediated epigenetic modifications elicit myeloid-derived suppressor cell activation via STAT3/S100A8. J. Leukoc. Biol., 97(4):677-688.
doi: 10.1189/jlb.1A1014-479R
[49]   Smith, Z.D., Meissner, A., 2013. DNA methylation: roles in mammalian development. Nat. Rev. Genet., 14:204-220.
doi: 10.1038/nrg3354
[50]   Sorensen, A.L., Timoskainen, S., West, F.D., et al., 2010. Lineage-specific promoter DNA methylation patterns segregate adult progenitor cell types. Stem Cells Dev., 19(8):1257-1266.
doi: 10.1089/scd.2009.0309
[51]   Sukari, A., Nagasaka, M., Al-Hadidi, A., et al., 2016. Cancer immunology and immunotherapy. Anticancer Res., 36(11): 5593-5606.
doi: 10.21873/anticanres.11144
[52]   Tampe, B., Tampe, D., Muller, C.A., et al., 2014. Tet3-mediated hydroxymethylation of epigenetically silenced genes contributes to bone morphogenic protein 7-induced reversal of kidney fibrosis. J. Am. Soc. Nephrol., 25(5): 905-912.
doi: 10.1681/ASN.2013070723
[53]   Trikha, P., Carson, W.R., 2014. Signaling pathways involved in MDSC regulation. Biochim. Biophys. Acta, 1846(1): 55-65.
doi: 10.1016/j.bbcan.2014.04.003
[54]   Trimboli, A.J., Cantemir-Stone, C.Z., Li, F., et al., 2009. Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature, 461(7267):1084-1091.
doi: 10.1038/nature08486
[55]   van Kampen, J.G.M., Marijnissen-van Zanten, M.A.J., Simmer, F., et al., 2014. Epigenetic targeting in pancreatic cancer. Cancer Treat. Rev., 40(5):656-664.
doi: 10.1016/j.ctrv.2013.12.002
[56]   Vincent, A., Omura, N., Hong, S.M., et al., 2011. Genome-wide analysis of promoter methylation associated with gene expression profile in pancreatic adenocarcinoma. Clin. Cancer Res., 17(13):4341-4354.
doi: 10.1158/1078-0432.CCR-10-3431
[57]   Vizoso, M., Puig, M., Carmona, F.J., et al., 2015. Aberrant DNA methylation in non-small cell lung cancer-associated fibroblasts. Carcinogenesis, 36(12):1453-1463.
doi: 10.1093/carcin/bgv146
[58]   Wang, Z., Gao, Z., Shi, Y., et al., 2007. Inhibition of Smad3 expression decreases collagen synthesis in keloid disease fibroblasts. J. Plast. Reconstr. Aesthet. Surg., 60(11): 1193-1199.
doi: 10.1016/j.bjps.2006.05.007
[59]   Wieczorek, G., Asemissen, A., Model, F., et al., 2009. Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in peripheral blood and solid tissue. Cancer Res., 69(2):599-608.
doi: 10.1158/0008-5472.CAN-08-2361
[60]   Xiang, J.F., Yin, Q.F., Chen, T., et al., 2014. Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res., 24(5):513-531.
doi: 10.1038/cr.2014.35
[61]   Xiao, Q., Zhou, D., Rucki, A.A., et al., 2016. Cancer-associated fibroblasts in pancreatic cancer are reprogrammed by tumor-induced alterations in genomic DNA methylation. Cancer Res., 76(18):5395-5404.
doi: 10.1158/0008-5472.CAN-15-3264
[62]   Xing, Y., Zhao, S., Zhou, B.P., et al., 2015. Metabolic reprogramming of the tumour microenvironment. Febs. J., 282(20):3892-3898.
doi: 10.1111/febs.13402
[63]   Yu, J., Walter, K., Omura, N., et al., 2012. Unlike pancreatic cancer cells pancreatic cancer associated fibroblasts display minimal gene induction after 5-Aza-2\'-deoxycytidine. PLoS ONE, 7(9):e43456.
doi: 10.1371/journal.pone.0043456
[1] Xiao-min Hua, Juan Wang, Dong-meng Qian, Jing-yi Song, Hao Chen, Xiu-li Zhu, Rui Zhou, Yu-dan Zhao, Xiu-zhi Zhou, Ling Li, Li Zhang, Xu-xia Song, Bin Wang. DNA methylation level of promoter region of activating transcription factor 5 in glioma[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2015, 16(9): 757-762.
[2] Zhan-huai Wang, Qiong Li, Shu-qin Ruan, Qian Xiao, Yue Liu, Ye-ting Hu, Li-feng Hu, Hai-yan Chen, Shu Zheng, Su-zhan Zhang, Ke-feng Ding. Sunitinib mesylate inhibits proliferation of human colonic stromal fibroblasts in vitro and in vivo[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(8): 701-712.
[3] Zhan-huai Wang, Ke-feng Ding, Jie-kai Yu, Xiao-hui Zhai, Shu-qin Ruan, Shan-wei Wang, Yong-liang Zhu, Shu Zheng, Su-zhan Zhang. Proteomic analysis of primary colon cancer-associated fibroblasts using the SELDI-ProteinChip platform[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2012, 13(3): 159-167.
[4] Yan-qin Huang, Ying Yuan, Wei-ting Ge, Han-guang Hu, Su-zhan Zhang, Shu Zheng. Comparative features of colorectal and gastric cancers with microsatellite instability in Chinese patients[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2010, 11(9): 647-653.
[5] Hong-xing Li, Lei Xiao, Cheng Wang, Jia-li Gao, Yong-gong Zhai. Epigenetic regulation of adipocyte differentiation and adipogenesis[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2010, 11(10): 784-791.