Please wait a minute...
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology)  2016, Vol. 17 Issue (1): 21-29    DOI: 10.1631/jzus.B1500174
Article     
Changes of testicular phosphorylated proteins in response to restraint stress in male rats
Supatcharee Arun1,Jaturon Burawat1,Wannisa Sukhorum1,Apichakan Sampannang1,Nongnut Uabundit1,Sitthichai Iamsaard1,2,?()
Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
Center for Research and Development of Herbal Health Products, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
Download: HTML     PDF(3604KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To investigate male reproductive parameters via changes of potential testicular protein markers in restraint-stress rats. Methods: Male Sprague-Dawley rats were divided into two groups (non-immobilized control and restraint-immobilized/stress groups, n=8 each group). The stress animals were immobilized (12 h/d) by a restraint cage for 7 consecutive days. All reproductive parameters, morphology and histology were observed and compared between groups. In addition, the expression of steroidogenic acute regulatory (StAR) and phosphotyrosine proteins (previously localized in Sertoli and late spermatid cells) in testicular lysate was assayed by immuno-Western blotting. Results: Testosterone level, sperm concentration and sperm head normality of stress rats were significantly decreased while the corticosterone level was increased as compared with the control (P<0.05). Histologically, stress rats showed low sperm mass in epididymal lumen and some atrophy of seminiferous tubules. Although the expression of testicular StAR protein was not significantly different between groups, changed patterns of the 131, 95, and 75 kDa testicular phosphorylated proteins were observed in the stress group compared with the control group. The intensity of a testicular 95-kDa phosphorylated protein was significantly decreased in stress rats. Conclusions: This study has demonstrated the alteration of testicular phosphorylated protein patterns, associated with adverse male reproductive parameters in stress rats. It could be an explanation of some infertility in stress males.



Key wordsRestraint-stress rats      Steroidogenic acute regulatory (StAR) protein      Testicular phosphorylated protein     
Received: 16 July 2015      Published: 01 January 2016
Fund:  Project supported by the Postgraduate Study Support Grant and Invitation Research Grant, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand(IN59134)
Corresponding Authors: Sitthichai Iamsaard     E-mail: sittia@kku.ac.th
Cite this article:

Supatcharee Arun,Jaturon Burawat,Wannisa Sukhorum,Apichakan Sampannang,Nongnut Uabundit,Sitthichai Iamsaard. Changes of testicular phosphorylated proteins in response to restraint stress in male rats. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2016, 17(1): 21-29.

URL:

http://www.zjujournals.com/xueshu/zjus-b/10.1631/jzus.B1500174     OR     http://www.zjujournals.com/xueshu/zjus-b/Y2016/V17/I1/21

Fig. 1 Body weights (a) and comparative morphologies of testis, penis, epididymis plus vas deferens, and seminal vesicle (b) between the control and restraint-stress groups Each data point in (a) is represented as mean±SD (n=8 rats each group). * P<0.05, vs. restraint-stress group
Fig. 2 Photographs showing sperm head morphologies observed in the control and restraint-stress groups Normal sperm head with normal hook (arrow) (a); abnormal sperm heads without hook (arrow head) (b), pinhead (c), and crooked neck (d)
Group Absolute weight (g)
Relative weight (g/100 g)
c s (106 cells/ml) Sperm head abnormality (%) c c (ng/ml) c t (ng/ml)
Testis Epididymis plus vas deferens Seminal vesicle Testis Epididymis plus vas deferens Seminal vesicle
Control 1.60±0.09 0.40±0.01 0.64±0.04 0.54±0.04 0.14±0.01 0.22±0.01 167.00±2.53 1.38±0.86 389.00±23.00 1.08±0.46
RS 1.26±0.15* 0.38±0.01 0.63±0.07 0.49±0.06* 0.15±0.00 0.25±0.03 69.50±8.98* 2.75±0.66* 506.20±57.47* 0.47±0.26*
Table 1 Effect of stress on the weights of male reproductive organs, sperm concentration, sperm head abnormality, and corticosterone levels in rats
Fig. 3 Photomicrographs showing histologies of testis (a, b), caudal epididymis (c, d), and penis (e, f) stained by H&E and penile section stained by Masson’s trichrome (g, h) of the control and restraint-stress groups, respectively Asterisks: atrophic seminiferous tubules; S: sheath of tunica albugenia; Cv: corpora cavernosa; Cs: corpus spinosum; U: urethra
Fig. 4 Representative Western-blot analysis of StAR protein expression in testicular lysates (a), relative intensity of testicular StAR protein (b), and ratio of StAR/β-actin (c) in the control and restraint-stress groups StAR lysate was used as a positive control. Data are represented as mean±SD (n=4 rats each group)
Fig. 5 Representative Western-blot analysis of tyrosine protein phosphorylation in testicular lysates (a), protein profiles (SDS-PAGE) (b), and relative intensity of the testicular phosphorylated 95-kDa protein (c) in the control and restraint-stress (RS) groups Bovine serum albumin (BSA) and epidermal growth factor (EGF)-like growth factors were used as negative and positive controls, respectively. Data were represented as mean±SD (n=4 rats each group). * P<0.05, compared with the control group
[1]   Ahmad A, Rasheed N, Gupta P. Novel Ocimumoside A and B as anti-stress agents: modulation of brain monoamines and antioxidant systems in chronic unpredictable stress model in rats. Phytomedicine. 2012, 19 639-647
doi: 10.1016/j.phymed.2012.02.012 pmid: 22455995
[2]   Almeida SA, Petenusci SO, Anselmo-Franci JA. Decreased spermatogenic and androgenic testicular functions in adult rats submitted to immobilization-induced stress from prepuberty. Braz J Med Biol Res. 1998, 31(11):1443-1448. (Available from: http://dx.doi.org/10.1590/S0100-879X1998001100013)
doi: 10.1590/S0100-879X1998001100013
[3]   Arad-Dann H, Beller U, Haimovitch R. Immunohistochemistry of phosphotyrosine residues: identification of distinct intracellular patterns in epithelial and steroidogenic tissues. J Histochem Cytochem. 1993, 41(4):513-519. (Available from: http://dx.doi.org/10.1177/41.4.7680679)
doi: 10.1177/41.4.7680679 pmid: 7680679
[4]   Arner P. Adrenergic receptor function in fat cells. Am J Clin Nutr. 1992, 55:228S-236S
pmid: 1309480
[5]   Aziz NM, Ragy MM, Gayyed MF. Effect of acute immobilization stress with or without a heme oxygenase inducer on testicular structure and function in male albino rats. J Basic Clin Physiol Pharmacol. 2013, 24(4):255-262. (Available from: http://dx.doi.org/10.1515/jbcpp-2012-0066)
doi: 10.1515/jbcpp-2012-0066 pmid: 23509214
[6]   Ballester J, Munoz MC, Dominguez J. Insulin-dependent diabetes affects testicular function by FSH- and LH-linked mechanisms. J Androl. 2004, 25(5):706-719. (Available from: http://dx.doi.org/10.1002/j.1939-4640.2004.tb02845.x)
doi: 10.1002/j.1939-4640.2004.tb02845.x pmid: 15292100
[7]   Bhatia N, Jaggi AS, Singh N. Adaptogenic potential of curcumin in experimental chronic stress and chronic unpredictable stress-induced memory deficits and alterations in functional homeostasis. J Nat Med. 2011, 65(3-4):532-543. (Available from: http://dx.doi.org/10.1007/s11418-011-0535-9)
doi: 10.1007/s11418-011-0535-9 pmid: 21479964
[8]   Bitgul G, Tekmen I, Keles D. Protective effects of resveratrol against chronic immobilization stress on testis. Urology. 2013, 6 1-10. (Available from: http://dx.doi.org/10.1155/2013/278720)
doi: 10.1155/2013/278720 pmid: 24307953
[9]   Brzozowski T, Konturek PC, Chlopicki S. Therapeutic potential of 1-methylnicotinamide against acute gastric lesions induced by stress: role of endogenous prostacyclin and sensory nerves. J Pharmacol Exp Ther. 2008, 326(1):105-116. (Available from: http://dx.doi.org/10.1124/jpet.108.136457)
doi: 10.1124/jpet.108.136457 pmid: 18385449
[10]   Carrasco GA, van de Kar LD. Neuroendocrine pharmacology of stress. Eur J Pharmacol. 2003, 463(1-3):235-272. (Available from: http://dx.doi.org/10.1016/S0014-2999(03)01285-8)
doi: 10.1016/S0014-2999(03)01285-8
[11]   Chotiwat C, Harris RB. Antagonism of specific corticotropin-releasing factor receptor subtypes selectively modifies weight loss in restrained rats. Am J Physiol Regul Integr Comp Physiol. 2008, 295(6):R1762-R1773. (Available from: http://dx.doi.org/10.1152/ajpregu.00196.2008)
doi: 10.1152/ajpregu.00196.2008 pmid: 18922964
[12]   Clarke RN, Klock SC, Geoghegan A. Relationship between psychological stress and semen quality among in-vitro fertilization patients. Hum Reprod. 1999, 14(3):753-758. (Available from: http://dx.doi.org/10.1093/humrep/14.3.753)
doi: 10.1093/humrep/14.3.753 pmid: 10221709
[13]   Ernst C, Foldenyi M, Angst J. The Zurich Study: XXI. Sexual dysfunctions and disturbances in young adults. Data of a longitudinal epidemiological study. Eur Arch Psychiatry Clin Neurosci. 1993, 243(3-4):179-188. (Available from: http://dx.doi.org/10.1007/BF02190725)
doi: 10.1007/BF02190725 pmid: 8117762
[14]   Hanks SK, Quinn AM, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988, 241(4861):42-52. (Available from: http://dx.doi.org/10.1126/science.3291115)
doi: 10.1126/science.3291115 pmid: 3291115
[15]   Hari Priya P, Sreenivasula Reddy P. Effect of restraint stress on lead-induced male reproductive toxicity in rats. J Exp Zool A Ecol Genet Physiol. 2012, 317(7):455-465. (Available from: http://dx.doi.org/10.1002/jez.1738)
doi: 10.1002/jez.1738 pmid: 22753343
[16]   Hari Priya P, Girish BP, Sreenivasula Reddy P. Restraint stress exacerbates alcohol-induced reproductive toxicity in male rats. Alcohol. 2014, 48(8):781-786. (Available from: http://dx.doi.org/10.1016/j.alcohol.2014.07.014)
doi: 10.1016/j.alcohol.2014.07.014 pmid: 25446643
[17]   Hunter T. A thousand and one protein kinases. Cell. 1987, 50(6):823-829. (Available from: http://dx.doi.org/10.1016/0092-8674(87)90509-5)
doi: 10.1016/0092-8674(87)90509-5 pmid: 3113737
[18]   Hunter T, Cooper JA. Protein tyrosine kinases. Annu Rev Biochem. 1985, 54(1):897-930. (Available from: http://dx.doi.org/10.1146/annurev.bi.54.070185.004341)
doi: 10.1146/annurev.bi.54.070185.004341
[19]   Iamsaard S, Prabsattroo T, Sukhorum W. Anethum graveolens Linn. (dill) extract enhances the mounting frequency and level of testicular tyrosine protein phosphorylation in rats. J Zhejiang Univ-Sci B (Biomed & Biotechnol). 2013, 14(3):247-252. (Available from: http://dx.doi.org/10.1631/jzus.B1200287)
doi: 10.1631/jzus.B1200287 pmid: 23463768
[20]   Iamsaard S, Arun S, Burawat J. Phenolic contents and antioxidant capacities of Thai-Makham Pom (Phyllanthus emblica L.) aqueous extracts. J Zhejiang Univ-Sci B (Biomed & Biotechnol). 2014, 15(4):405-408. (Available from: http://dx.doi.org/10.1631/jzus.B1300284)
doi: 10.1631/jzus.B1300284 pmid: 24711362
[21]   Kennedy SH, Dickens SE, Eisfeld BS. Sexual dysfunction before antidepressant therapy in major depression. J Affect Disord. 1999, 56(2-3):201-208. (Available from: http://dx.doi.org/10.1016/S0165-0327(99)00050-6)
doi: 10.1016/S0165-0327(99)00050-6 pmid: 10701478
[22]   Kopf G, Gerton G, Wassarman P. The mammalian sperm acrosome and the acrosome reaction. Elements of Mammalian Fertilization. 1991 Boca Raton, USA CRC Press 154-203
doi: 10.1007/978-1-4757-8982-9_4
[23]   Kwiecien S, Ptak-Belowska A, Krzysiek-Maczka G. Asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, interacts with gastric oxidative metabolism and enhances stress-induced gastric lesions. J Physiol Pharmacol. 2012, 63(5):515-524
doi: 10.1002/cphy.c110065 pmid: 23211305
[24]   Lafontan M, Barbe P, Galitzky J. Adrenergic regulation of adipocyte metabolism. Hum Reprod. 1997, 12(Suppl. 1):6-20. (Available from: http://dx.doi.org/10.1093/humrep/12.suppl_1.6)
doi: 10.1093/humrep/12.suppl_1.6 pmid: 6313835
[25]   Lin H, Yuan KM, Zhou HY. Time-course changes of steroidogenic gene expression and steroidogenesis of rat Leydig cells after acute immobilization stress. Int J Mol Sci. 2014, 15(11):21028-21044. (Available from: http://dx.doi.org/10.3390/ijms151121028)
doi: 10.3390/ijms151121028 pmid: 25405735
[26]   Nathan SG. The epidemiology of the DSM-III psychosexual dysfunctions. J Sex Marital Ther. 1986, 12(4):267-281. (Available from: http://dx.doi.org/10.1080/00926238608415413)
doi: 10.1080/00926238608415413 pmid: 3493350
[27]   Orr TE, Mann DR. Effects of restraint stress on plasma LH and testosterone concentrations, Leydig cell LH/HCG receptors, and in vitro testicular steroidogenesis in adult rats. Horm Behav. 1990, 24(3):324-341. (Available from: http://dx.doi.org/10.1016/0018-506X(90)90013-N)
doi: 10.1016/0018-506X(90)90013-N pmid: 2227847
[28]   Prabsattroo T, Wattanathorn J, Iamsaard S. Moringa oleifera extract enhances sexual performance in stressed rats. J Zhejiang Univ-Sci B (Biomed & Biotechnol). 2015, 16(3):179-190. (Available from: http://dx.doi.org/10.1631/jzus.B1400197)
doi: 10.1631/jzus.B1400197
[29]   Rai J, Pandey SN, Srivastava RK. Effect of immobilization stress on spermatogenesis of albino rats. J Anat Soc India. 2003, 52(1):55-57
[30]   Rai J, Pandey S.N. Srivastava, R.K. . Testosterone hormone level in albino rats following restraint stress of long duration. J Anat Soc India. 2004, 53(1):17-19
[31]   Rao M, Zhao XL, Yang J. Effect of transient scrotal hyperthermia on sperm parameters, seminal plasma biochemical markers, and oxidative stress in men. Asian J Androl. 2015, 17(4):668-675. (Available from: http://dx.doi.org/10.4103/1008-682X.146967)
doi: 10.4103/1008-682X.146967 pmid: 25652627
[32]   Retana-Márquez S, Bonilla-Jaime H, Vazquez-Palacios G. Changes in masculine sexual behavior, corticosterone and testosterone in response to acute and chronic stress in male rats. Horm Behav. 2003, 44(4):327-337. (Available from: http://dx.doi.org/10.1016/j.yhbeh.2003.04.001)
doi: 10.1016/j.yhbeh.2003.04.001
[33]   Sakr SA, Zowail ME, Marzouk AM. Effect of saffron (Crocus sativus L.) on sodium valporate induced cytogenetic and testicular alterations in albino rats. Anat Cell Biol. 2014, 47(3):171-179. (Available from: http://dx.doi.org/10.5115/acb.2014.47.3.171)
doi: 10.5115/acb.2014.47.3.171 pmid: 4178192
[34]   Scherer IJ, Holmes PV, Harris RB. The importance of corticosterone in mediating restraint-induced weight loss in rats. Physiol Behav. 2011, 102(2):225-233. (Available from: http://dx.doi.org/10.1016/j.physbeh.2010.11.014)
doi: 10.1016/j.physbeh.2010.11.014 pmid: 21092743
[35]   Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990, 61(2):203-212. (Available from: http://dx.doi.org/10.1016/0092-8674(90)90801-K)
doi: 10.1016/0092-8674(90)90801-K pmid: 2158859
[36]   Visconti PE, Kopf GS. Regulation of protein phosphorylation during sperm capacitation. Biol Reprod. 1998, 59(1):1-6. (Available from: http://dx.doi.org/10.1095/biolreprod59.1.1)
doi: 10.1095/biolreprod59.1.1 pmid: 9674985
[37]   Warzecha Z, Dembinski A, Ceranowicz P. Role of sensory nerves in gastroprotective effect of anandamide in rats. J Physiol Pharmacol. 2011, 62(2):207-217
[38]   Weissman BA, Sottas CM, Holmes M. Normal responses to restraint stress in mice lacking the gene for neuronal nitric oxide synthase. J Androl. 2009, 30(5):614-620. (Available from: http://dx.doi.org/10.2164/jandrol.108.007443)
doi: 10.2164/jandrol.108.007443 pmid: 2771686
[39]   Wyrobek AJ, Bruce WR. Chemical induction of sperm abnormalities in mice. PNAS. 1975, 72(11):4425-4429. (Available from: http://dx.doi.org/10.1073/pnas.72.11.4425)
doi: 10.1073/pnas.72.11.4425 pmid: 1060122
[40]   Xu M, Wei Q, Zheng K. Protective effects of Big-leaf mulberry and physiological roles of nitric oxide synthases in the testis of mice following water immersion and restraint stress. Acta Histochem. 2014, 116(8):1323-1330. (Available from: http://dx.doi.org/10.1016/j.acthis.2014.08.003)
doi: 10.1016/j.acthis.2014.08.003
[41]   Yanagimachi R, Knobil E. Mammalian fertilization. The Physiology of Reproduction. 1994. New York, Raven Press. 189-317
[42]   Zardooz H, Zahedi Asl S, Gharib Naseri MK. Effect of chronic restraint stress on carbohydrate metabolism in rat. Physiol Behav. 2006, 89(3):373-378. (Available from: http://dx.doi.org/10.1016/j.physbeh.2006.06.023)
doi: 10.1016/j.physbeh.2006.06.023 pmid: 16899260
[43]   Zayachkivska OS, Gzhegotsky MR, Terletska OI. Influence of Viburnum opulus proanthocyanidins on stress-induced gastrointestinal mucosal damage. J Physiol Pharmacol. 2006, 5 155-167
doi: 10.1152/jn.00538.2006 pmid: 17218766
No related articles found!