Loading...

Current Issue

, Volume 18 Issue 4 Previous Issue    Next Issue
New technology
From noise to information: a new technology of olefin polymerization fluidized bed reactor based on acoustic emission
Hao-tong Wang, Zheng-liang Huang, Zu-wei Liao, Bin-bo Jiang, Jing-dai Wang, Yong-rong Yang, Guo-dong Han, Bao-zhu Yang
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(4): 245-255.   https://doi.org/10.1631/jzus.A1700082
Abstract( 162 )     PDF(0KB)( 124 )
The fluidized bed is widely used in many industrial processes because of its vigorous mixing and heat transfer properties. However, when heat transfer is blocked, the particles are easily melted and agglomerated, and even cause the industrial reactor to shut down. From the point of mechanism analysis, the process of explosive agglomeration is a typical meso-scale problem in the fluidized bed, and there is a complex evolution process between particle fluidization and reactor shutdown. Grasping the regulation of meso-scale structure is one of the major challenges faced by chemical engineering. Thus, in this background, the fluidized bed acoustic emission detection technology, agglomeration fault self-repair technology, and a direct scale-up technique of the fluidized bed mathematical model were invented. These technologies have provided strong reliability for stable operation and have been successfully applied in 14 sets of industrial plants.
Articles
Lithium-ion battery state-of-charge estimation based on deconstructed equivalent circuit at different open-circuit voltage relaxation times
Xi-ming Cheng, Li-guang Yao, Michael Pecht
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(4): 256-267.   https://doi.org/10.1631/jzus.A1600251
Abstract( 326 )     PDF(0KB)( 318 )
Equivalent circuit model-based state-of-charge (SOC) estimation has been widely studied for power lithium-ion batteries. An appropriate relaxation period to measure the open-circuit voltage (OCV) should be investigated to both ensure good SOC estimation accuracy and improve OCV test efficiency. Based on a battery circuit model, an SOC estimator in the combination of recursive least squares (RLS) and the extended Kalman filter is used to mitigate the error voltage between the measurement and real values of the battery OCV. To reduce the iterative computation complexity, a two-stage RLS approach is developed to identify the model parameters, the battery circuit of which is divided into two simple circuits. Then, the measurement values of the OCV at varying relaxation periods and three temperatures are sampled to establish the relationships between SOC and OCV for the developed SOC estimator. Lastly, dynamic stress test and federal test procedure drive cycles are used to validate the model-based SOC estimation method. Results show that the relationships between SOC and OCV at a short relaxation time, such as 5 min, can also drive the SOC estimator to produce a good performance.
Dynamic behavior of a hydraulic crane operating a freely suspended payload
Bozhidar Grigorov, Rosen Mitrev
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(4): 268-281.   https://doi.org/10.1631/jzus.A1600292
Abstract( 507 )     PDF(0KB)( 571 )
We describe an investigation of the dynamic behavior of a hydraulically driven crane with a freely suspended payload during luffing and slewing motions. To simplify the task, the two movements are considered separately. Taking into account only one motion at a time, the crane is regarded as a three-link kinematic chain with revolute joints. The forward dynamics problem is solved for a crane with three rotational degrees of freedom, two of which describe the load swinging. In both the cases studied, the links are driven by a torque applied via a hydraulic drive, i.e., a linear actuator for the luffing case and a rack and pinion mechanism for the slewing motion. To compose the set of differential equations for the forward dynamics problem, a method based on a general Newton-Euler algorithm is used. From these simulations the time histories of various parameters, namely the swinging angles, hydraulic pressures, and joint forces, are determined. The results obtained via simulations are confirmed experimentally and a good agreement between the two outputs is observed. The results also show that a hydraulic drive system using fast opening flow direction control valves increases the load swing and imposes extensive inertial forces and problems of fatigue and reliability.
Buckling design of large steel silos with various slendernesses
Qing-shuai Cao, Yang Zhao
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(4): 282-305.   https://doi.org/10.1631/jzus.A1600369
Abstract( 403 )     PDF(0KB)( 502 )
Large steel silos are typical kinds of thin-walled structure which are widely used for storing huge quantities of granular solids in industry and agriculture. In the present analyses, the buckling design of large steel silos subject to Eurocode-specified solid pressure is demonstrated. The finite element model is established using the commercial general purpose computer package ANSYS. Six types of buckling analyses are carried out for the geometrically perfect and imperfect models with and without consideration of material plasticity. The load cases of concentric discharge, discharge patch load, large eccentricity discharge, and large eccentricity filling are considered. The buckling behavior of six example steel silos with capacities of 30 000–60 000 m3 is investigated. The silos’ slenderness ranges from 4.77 to 0.35, comprising very slender, slender, intermediate slender, squat, and retaining silos. The index called the ratio of capacity to steel consumption (RCS) is initially defined in the paper, which provides an effective measure for the economical design of steel silos. It is validated that the RCS index increases rapidly with the decrease of silo slenderness, and the storage efficiency of steel silo improved greatly as the slenderness changes from slender silo to retaining silo. The effects of patch load reveal that the buckling modes in the case of discharge patch load are very different from those of silos under concentric solid pressure, and the effect is unfavorable for buckling resistance of all levels of slenderness of the example silos, but contributes a small decrease to the RCS index (less than 10%). The buckling deformations from both the linear and nonlinear buckling analyses in large eccentric discharge are strongly asymmetrical arising from the circumferential and meridional non-uniform distribution of the solid pressures. The buckling is mainly governed by the non-uniform distribution of the solid pressure other than other influential factors such as the weld imperfection, geometrical and material nonlinearity, compared with the load case of concentric discharge. The RCS index of example silos under large eccentric discharge is reduced substantially, and is approximately half that of silos under concentric discharge. The linear and nonlinear buckling deformations in large eccentric filling are also asymmetrical, deviating from the center to the side where the most friction locates to the highest wall contact. The RCS index of example silos under large eccentric filling is also reduced substantially, and is approximately 70% that of silos under concentric discharge. This reveals that the large eccentricity both in discharging and filling could result in a strong decrease of storage efficiency of steel silos.
Syntheses and characterizations of alloyed CoxNi1−xO nanocrystals
Xin Wang, Zhi-zhen Ye, Yi-zheng Jin
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(4): 306-312.   https://doi.org/10.1631/jzus.A1600399
Abstract( 328 )     PDF(0KB)( 320 )
Alloying is an effective way to manipulate the composition and physico-chemical properties of functional materials. We demonstrated the syntheses of alloyed CoxNi1−xO nanocrystals using a nonaqueous approach, with x continuously tuned from 0 to 1 by varying the molar ratios of the cobalt precursor in the reagents. The morphological, structural, and compositional properties of the alloyed CoxNi1−xO nanocrystals were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and energy dispersive X-ray spectroscopy (EDS). The results showed that the cobalt and nickel atoms were homogeneously distributed in the alloyed nanocrystals. The as-prepared CoxNi1−xO nanocrystals can be applied as the hole-transporting layers in polymer light emitting diodes (PLEDs). Our study provides a good example for the syntheses of alloyed oxide nanocrystals with continuously tunable composition.
Effect of flushing on the detachment of biofilms attached to the walls of metal pipes in water distribution systems
Jing-qing Liu, Zhi-feng Luo, Ke Liu, Yi-fu Zhang, Hong-xi Peng, Bao-lan Hu, Hong-xing Ren, Xiao-yan Zhou, Shang-de Qiu, Xiao-fang He, Ping Ye, Hamid Bastani, Li-ping Lou
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(4): 313-328.   https://doi.org/10.1631/jzus.A1600316
Abstract( 216 )     PDF(0KB)( 258 )
Biofilm detachment caused by flushing can result in secondary contamination in drinking water distribution systems (DWDSs). To evaluate the impact of flushing on biofilm detachment, actual water supply pipes including ductile cast iron pipes (DCIPs), gray cast iron pipes (GCIPs), and stainless steel compound pipes (SSCPs) were used in this study. Real-time quantitative polymerase chain reaction and 454 pyrosequencing were used to quantify bacteria and analyse microbial community composition, respectively. The results showed that the pipe material greatly influences the resistance of a biofilm to flushing. Biofilms attached to DCIPs were able to resist quite strong flushing, while those attached to GCIPs and SSCPs were sensitive to flushing. Both flush-resistant and flush-sensitive bacteria were present in all the biofilms, but their frequency differed among the different metal pipes. Thus, the resistance to flushing of bacteria is related not only to the nature of the bacteria, but also to the pipe material. Although flushing can remove some of the biofilm and may be a good way to clean the DWDS, the shear stress needed to remove the biofilm differs among different pipe types. The results of this study provide technical support for the management and operation of DWDS.
6 articles

NoticeMore

Links