Please wait a minute...

Current Issue

, Volume 11 Issue 7 Previous Issue    Next Issue
Civil Engineering
Characteristics of strong winds at the Runyang Suspension Bridge based on field tests from 2005 to 2008
Hao Wang, Ai-qun Li, Chang-ke Jiao, Xing-ping Li
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(7): 465-476.   https://doi.org/10.1631/jzus.A0900601
Abstract   PDF (0KB)
Field measurement of strong wind characteristics is of great significance for the development of bridge wind engineering. Located in east China, the Runyang Suspension Bridge (RSB) with a main span of 1490 m is the longest bridge in China and the third longest in the world. During the last four years, the RSB has suffered from typhoons and strong northern winds on more than ten occasions. To determine the strong wind characteristics of the RSB, wind measurement data obtained from field tests during strong winds and data from the wind environment monitoring subsystem of the structural health monitoring system (SHMS) of the RSB were combined to analyze the wind speed and direction, variation in wind speed with height, turbulence intensity, turbulence integral length, wind friction speed and the power spectrum. Comparative studies on the characteristics of these different strong winds were carried out based on the current wind-resistant design specification for highway bridges. Results showed that some regularity in wind characteristics can be found in these different typhoons passing through the RSB. The difference between a strong northern wind and a typhoon is relatively clear, and in summer the typhoon is the dominant wind load acting on the RSB. In addition, there were some differences between the measured strong wind characteristics and the values suggested by the specification, especially in respect to turbulence intensity and turbulence integral length. Results provide measurement data for establishing a strong wind characteristic database for the RSB and for determining the strong wind characteristic parameter values of this coastal area in east China.
Numerical investigation on the drag reduction properties of a suction controlled high-rise building
Chao-rong Zheng, Yao-chun Zhang
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(7): 477-487.   https://doi.org/10.1631/jzus.A0900593
Abstract   PDF (0KB)
To reduce the wind-induced drag and improve the wind-resistance performance of a high-rise building, steady suction control is introduced into the building structure. Based on validation of the numerical methods by experiment with suction control over the flow separation of a 3D backward-facing step, the Reynolds stress equation model is used to investigate the drag reduction (DR) properties of a high-rise building whose side faces are controlled by all-height suction. Effects of the orifice geometrical parameters and suction flux parameters on the DR and the separation control are analyzed, and the detailed flow fields are shown to clarify the mechanism of suction control. The results indicate that suction control is very effective in reducing the wind loads on the high-rise building model, and only the dimensionless suction flux dominates. Lastly, the power consumed and the counterforce induced by suction are discussed, the suction models become the “zero-drag” model under certain suction angles.
Carbon steel slag as cementitious material for self-consolidating concrete
Yu-Chu Peng, Chao-Lung Hwang
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(7): 488-494.   https://doi.org/10.1631/jzus.A0900635
Abstract   PDF (0KB)
This study deals with the recycling of carbon steel slag (CSS) to produce self-consolidating concrete (SCC). Since the chemical composition of CSS is similar to that of Portland cement or blast furnace slag (BFS), it is expected to behave similarly. In the current study, the pozzolanic activity index of CSS is examined. Furthermore, the use of CSS as a pozzolanic material to partially replace Portland cement in the production of SCC is tested. We designed concrete mixtures with different water-to-cementitious material ratios (w/cm) keeping water and superplasticizer (SP) contents constant. Results showed that the design and performance of all the concrete mixtures used in this investigation were comparable to those of SCC and high performance concrete (HPC). However, compared to ordinary plain concrete (OPC), the additional CSS content increases the setting time. In the CSS mixtures set for 90 d, compressive strengths of 86%, 134% and 121% were attained as compared to the control concrete; the corresponding w/cm ratios were 0.28, 0.32 and 0.40, respectively. Verifying the soundness of the SCC for meeting the criteria for HPC, the ultrasonic pulse velocity (UPV) of CSS was found to be comparable to that of ordinary concrete. In conclusion, the recycling of CSS can be advantageously employed in the production of SCC.
An assessment model of water pipe condition using Bayesian inference
Chen-wan Wang, Zhi-guang Niu, Hui Jia, Hong-wei Zhang
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(7): 495-504.   https://doi.org/10.1631/jzus.A0900628
Abstract   PDF (0KB)
An accurate understanding of the condition of a pipe is important for maintaining acceptable levels of service and providing appropriate strategies for maintenance and rehabilitation in water supply systems. Many factors contribute to pipe deterioration. To consolidate information on these factors to assess the condition of water pipes, this study employed a new approach based on Bayesian configuration against pipe condition to generate factor weights. Ten pipe factors from three pipe materials (cast iron, ductile cast iron and steel) were used in this study. The factors included size, age, inner coating, outer coating, soil condition, bedding condition, trench depth, electrical recharge, the number of road lanes, material, and operational pressure. To address identification problems that arise when switching from pipe factor information to actual pipe condition, informative prior factor weight distribution based on the literature and previous knowledge of water pipe assessment was used. The influence of each factor on the results of pipe assessment was estimated. Results suggested that factors that with smaller weight values or with weights having relative stable posterior means and narrow uncertainty bounds, would have less influence on pipe conditions. The model was the most sensitive to variations of pipe age. Using numerical experiments of different factor combinations, a simplified model, excluding factors such as trench depth, electrical recharge, and the number of road lanes, is provided. The proposed Bayesian inference approach provides a more reliable assessment of pipe deterioration.
Mechanics and Mechanical Engineering
Velocity distribution and scaling properties of wall bounded flow
Zhao-cun Liu, Wei-jia Fan
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(7): 505-510.   https://doi.org/10.1631/jzus.A1000044
Abstract   PDF (0KB)
The scaling and similarity of wall bounded turbulent flow were studied. The properties of such flows and the relationship between a power law and a logarithmic type of velocity distribution were investigated. Based on the physical mechanism involved, our results show that the power law and the logarithmic distribution are only different forms with the same hypothesis and hold only in the outer flow zone. Thus, a universal explanation for various empirical formulae of velocity distribution was obtained. Manning’s formula was studied to explain theoretically the experiential result that the roughness coefficient is only a comprehensive parameter of the whole system without a corresponding physical factor. The physical mechanism of the velocity distribution of parallel to wall bounded flow was explored, the results show that the parameters in the formula of velocity distribution are indices of the system responding to flowing environmental factors to represent general case of boundary roughness and the flowing state, corresponding physical mechanism is vortex motion.
A simple approach for determining the preload of a wire race ball bearing
Xiao-biao Shan, Li-li Wang, Tao Xie, Wei-shan Chen
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(7): 511-519.   https://doi.org/10.1631/jzus.A0900583
Abstract   PDF (0KB)
Wire race ball bearings have been widely used in high-tech weapons. The preload of a wire race ball bearing is crucial in engineering applications. In this study, a more effective approach is proposed for exact determination of the wire race ball bearing preload. A new mathematical model of the preload and the starting torque of the wire race ball bearing was built using the theorem of the 3D rolling friction resistance and the non-conforming contact theory. Employing a wire race ball bearing with a 1000 mm diameter used in a specific type of aircraft simulating rotary table, the numerical analysis in MATLAB® showed that the preload magnitude can be controlled in the range of 130–140 μm. As verification, the experimental results were in agreement with the theoretical results, and confirm the feasibility of this method. This new approach is more exact in the preload range of 10–158 μm than that computed by the numerical method reported in our previous work (Shan et al., 2007b). This implies that the present method contributes to more effectively preventing rolling noise, overturning moments and wear of the wire race ball bearing. The current research provides critical technical support for the engineering application of wire race ball bearings with large diameters.
Transportation Engineering
Optimal velocity functions for car-following models
Milan Batista, Elen Twrdy
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(7): 520-529.   https://doi.org/10.1631/jzus.A0900370
Abstract   PDF (0KB)
The integral part of the optimal velocity car-following models is the optimal velocity function (OVF), which can be derived from measured velocity-spacing data. This paper discusses several characteristics of the OVF and presents regression analysis on two classical datasets, the Lincoln and Holland tunnels, with different possible OVFs. The numerical simulation of the formation of traffic congestion is conducted with three different heuristic OVFs, demonstrating that these functions give results similar to those of the famous Bando OVF (Bando et al., 1995). Also an alternative method is present for determining the sensitivity and model parameters based on a single car driving to a fixed barrier.
Environmental and Chemical Engineering
Combustion characteristics of tannery sludge and volatilization of heavy metals in combustion
Xu-guang Jiang, Chun-yu Li, Zhen-wei Fei, Yong Chi, Jian-hua Yan
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(7): 530-537.   https://doi.org/10.1631/jzus.A0900414
Abstract   PDF (0KB)
Incineration is considered one of the most readily available techniques for sewage sludge disposal, including tannery sludge, which often contains significant amounts of volatile heavy metals. The combustion characteristics and kinetic analysis of tannery sludge were investigated using thermogravimetric analysis (TGA) at a heating rate of 30 °C/min in 50–950 °C. In addition to confirming that tannery sludge has a high content of volatile material and ash, it was further discovered that almost all the zinc (Zn) in tannery sludge is volatilized at 900 °C. The degree of volatilization for heavy metals at 900 °C followed the order of Zn>Cd>Cu>Mn>Pb>Cr. Moreover, the volatilization of these heavy metals increased with temperature. It is thus concluded that, to avoid heavy metal volatization during incineration disposal, 800 °C is a reasonable incineration temperature.
Destruction of hexafluoroethane in a dielectric-packed bed plasma reactor
D. H. Kim, Y. S. Mok, S. B. Lee, S. M. Shin
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(7): 538-544.   https://doi.org/10.1631/jzus.A0900734
Abstract   PDF (0KB)
The destruction of hexafluoroethane (C2F6), also known as R-116, was investigated in a nonthermal plasma reactor packed with dielectric pellets. The effects of the feed gas composition and the input power on the destruction of C2F6 were examined. The feed gas composition was varied by changing the oxygen content, the argon content and the initial C2F6 concentration. An increased input power led to increased C2F6 destruction as a result of promoting the electron-molecule collisions to dissociate C2F6 molecules. The addition of argon to the feed gas greatly improved the C2F6 destruction by reducing the energy losses due to vibrational excitation and dissociation of N2 molecules, while the increases in the oxygen content and the initial C2F6 concentration decreased the destruction efficiency. The byproducts including CO2, CO, COF2, CF4, SiF4, NO2, and N2O were identified, and the destruction mechanisms were elucidated, referring to these compounds. The most abundant byproduct was found to be carbonyl fluoride (COF2), indicating that it serves as an important medium to convert C2F6 into CO2. The energy requirement for the C2F6 destruction was in the range of 8.2–45.3 MJ/g, depending on the initial concentration.
9 articles

NoticeMore

Links