Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2015, Vol. 16 Issue (3): 217-228    DOI: 10.1631/jzus.A1400273
Mechanical Engineering     
Experimental study on the through-thickness properties of structural steel thick plate and its heat-affected zone at low temperatures
Yuan-qing Wang, Xiao-wei Liao, Yuan-yuan Zhang, Yong-jiu Shi
Key laboratory of Civil Engineering Safety and Durability of China Education Ministry, Department of Civil Engineering, Tsinghua University, Beijing 100084, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Lamellar tearing and crack-induced brittle failures along steel plates in the through-thickness direction seriously threaten the safety and reliability of steel thick plate structures in construction and service, especially at low ambient temperatures. Three kinds of tests, including uniaxial tensile tests, Charpy V-Notch impact tests, and three-point bending (TPB) tests were performed at normal and low temperatures to investigate the through-thickness mechanical properties, impact and fracture toughness of Q345B structural steel plates with thicknesses from 60 to 165 mm. The test specimens were mainly sampled along the through-thickness direction of the plate, but transverse specimens along the rolling direction were also involved. The ductility index (percentage reduction of area), impact toughness index (Charpy impact energy), and fracture toughness index (critical crack tip opening displacement (CTOD) values) all decrease as the temperature declines. All the mechanical properties and the impact and fracture toughness along the through-thickness direction are worse than those along the rolling direction. The results also offer experimental support for the determination of an evaluation indicator for structural steel thick plates with through-thickness characteristics.

Key wordsStructural steel thick plate      Through-thickness properties      Mechanical properties      Impact toughness      Fracture toughness      Low temperature     
Received: 13 September 2014      Published: 04 March 2015
CLC:  TU391  
Cite this article:

Yuan-qing Wang, Xiao-wei Liao, Yuan-yuan Zhang, Yong-jiu Shi. Experimental study on the through-thickness properties of structural steel thick plate and its heat-affected zone at low temperatures. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(3): 217-228.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1400273     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2015/V16/I3/217

[1] Kah Yen Foong, U. Johnson Alengaram, Mohd Zamin Jumaat, Kim Hung Mo. Enhancement of the mechanical properties of lightweight oil palm shell concrete using rice husk ash and manufactured sand[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(1): 59-69.
[2] Jing Xu, David J. Corr, Surendra P. Shah. Nanomechanical properties of C-S-H gel/cement grain interface by using nanoindentation and modulus mapping[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(1): 38-46.
[3] Yi-ou Shen, Wesley Cantwell, Yan Li. Skin-core adhesion in high performance sandwich structures[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(1): 61-67.
[4] Victoria Chifor, Zafer Tekiner, Mehmet Turker, Radu Orban. An experimental investigation of properties of polyethylene reinforced with Al powders[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(8): 583-592.
[5] Qing Zhang, Shi-ming Wang, Yong-cheng Liang. Mechanical and electronic properties of diamondlike BC5[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(3): 177-182.
[6] Dan Ye, De-chang Jia, Zhi-hua Yang, Zhen-lin Sun, Peng-fei Zhang. Microstructures and mechanical properties of SiBCNAl ceramics produced by mechanical alloying and subsequent hot pressing[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(10): 761-765.
[7] Jing-mei Ma, Feng Ye, Yan-ge Cao, Chun-feng Liu, Hai-jiao Zhang. Microstructure and mechanical properties of liquid phase sintered silicon carbide composites[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(10): 766-770.
[8] Jing-yi Zhang, Feng Ye. Effect of agarose content on microstructures and mechanical properties of porous silicon nitride ceramics produced by gelcasting[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(10): 771-775.
[9] Ying-li Zhao, Jie Shi, Wen-quan Cao, Mao-qiu Wang, Gang Xie. Effect of direct quenching on microstructure and mechanical properties of medium-carbon Nb-bearing steel[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(10): 776-781.
[10] Xian-kui ZHU. J-integral resistance curve testing and evaluation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(11): 1541-1560.
[11] Hong-sheng ZHAO, Lei CHEN, Nian-zi GAO, Kai-hong ZHANG, Zi-qiang LI. Low temperature sintering and performance of aluminum nitride/borosilicate glass[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(1): 109-113.
[12] ZAKHARENKO A. A.. Studying creation of bulk elementary excitation by heaters in superfluid helium-II at low temperatures[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(7): 1065-1076.
[13] SUJI D., NATESAN S. C., MURUGESAN R.. Experimental study on behaviors of polypropylene fibrous concrete beams[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(7): 1101-1109.
[14] LI Zhuang, WU Di. Effects of finishing rolling temperatures and reduction on the mechanical properties of hot rolled multiphase steel[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(5): 797-804.
[15] Wei Lin-Sheng, Zhou Jun-Hu, Wang Zhi-Hua, Cen Ke-Fa. Kinetic modelling of homogeneous low temperature multi-pollutant oxidation by ozone: The importance of SO and HCl in predicting oxidation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(Supplement 2): 335-339.