Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2011, Vol. 12 Issue (1): 33-45    DOI: 10.1631/jzus.A1000098
Mechanics and Mechanical Engineering     
A semi-implicit three-step method based on SUPG finite element formulation for flow in lid driven cavities with different geometries
Cheng Huang, Dai Zhou, Yan Bao
School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  A numerical algorithm using a bilinear or linear finite element and semi-implicit three-step method is presented for the analysis of incompressible viscous fluid problems. The streamline upwind/Petrov-Galerkin (SUPG) stabilization scheme is used for the formulation of the Navier-Stokes equations. For the spatial discretization, the convection term is treated explicitly, while the viscous term is treated implicitly, and for the temporal discretization, a three-step method is employed. The present method is applied to simulate the lid driven cavity problems with different geometries at low and high Reynolds numbers. The results compared with other numerical experiments are found to be feasible and satisfactory.

Key wordsSemi-implicit three-step method      Streamline upwind/Petrov-Galerkin (SUPG) finite element method (FEM)      Unsteady incompressible flows      Lid driven cavity problem     
Received: 13 March 2010      Published: 06 January 2011
CLC:  TU3  
Cite this article:

Cheng Huang, Dai Zhou, Yan Bao. A semi-implicit three-step method based on SUPG finite element formulation for flow in lid driven cavities with different geometries. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(1): 33-45.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1000098     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2011/V12/I1/33

[1] Xu Wang, Peng Huang, Xian-feng Yu, Xin-rong Wang, Hai-ming Liu. Wind characteristics near the ground during typhoon Meari[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(1): 33-48.
[2] Zi-qin Jiang, Yan-lin Guo, Ai-lin Zhang, Chao Dou, Cai-xia Zhang. Experimental study of the pinned double rectangular tube assembled buckling-restrained brace[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(1): 20-32.
[3] Cheng-ming Lan , Hui Li, Jun-Yi Peng , Dong-Bai Sun . A structural reliability-based sensitivity analysis method using particles swarm optimization: relative convergence rate[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(12): 961-973.
[4] Cao Wang, Quan-wang Li, Long Pang, A-ming Zou. Estimating the time-dependent reliability of aging structures in the presence of incomplete deterioration information[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(9): 677-688.
[5] Dong-Ming Yan, Hua-Wei Yin, Cheng-Lin Wu, Yan-Long Li, Jason Baird, Gen-Da Chen. Blast response of full-size concrete walls with chemically reactive enamel (CRE)-coated steel reinforcement[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(9): 689-701.
[6] Gianpaolo Perrella, Giovanni Maria Montuori, Massimiliano Fraldi, Elena Mele. Design procedure for thin three-layer plates made of a depleted material[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(6): 427-442.
[7] Zhen-yu Wang, Yang Zhao, Guo-wei Ma, Zhi-guo He. A numerical study on the high-velocity impact behavior of pressure pipes[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(6): 443-453.
[8] Peng-cheng Yang, Yan-bin Shen, Yao-zhi Luo. Active structures integrated with wireless sensor and actuator networks: a bio-inspired control framework[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(4): 253-272.
[9] Xiao-bin Song, Ya-jie Wu, Rui Jiang. Compressive capacity of longitudinally cracked wood columns retrofitted by self-tapping screws[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(12): 964-975.
[10] Ming-min Ding, Bin Luo, Zheng-xing Guo, Jie Pan. Integral tow-lifting construction technology of a tensile beam-cable dome[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(12): 935-950.
[11] Zi-qin Jiang, Yan-lin Guo, Xiao-an Wang, Bin Huang. Design method of the pinned external integrated buckling-restrained braces with extended core. Part I: theoretical derivation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(10): 781-792.
[12] Zi-qin Jiang, Yan-lin Guo, Jing-zhong Tong, Xing Yuan. Design method of the pinned external integrated buckling-restrained braces with extended core. Part II: finite element numerical verification[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(10): 793-804.
[13] Jin-yu Zhou, Wu-jun Chen, Bing Zhao, Zhen-yu Qiu, Shi-lin Dong. Distributed indeterminacy evaluation of cable-strut structures: formulations and applications[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(9): 737-748.
[14] Yue Wu, Zhao-qing Chen, Xiao-ying Sun. Research on the wind-induced aero-elastic response of closed-type saddle-shaped tensioned membrane models[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(8): 656-668.
[15] Jin Zhang, Qing-feng Xu, Yi-xiang Xu, Ming Zhang. Research on residual bending capacities of used wood members based on the correlation between non-destructive testing results and the mechanical properties of wood[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(7): 541-550.