Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  0, Vol. 7 Issue (101): 237-244    DOI: 10.1631/jzus.2006.AS0237
Computer & Information Science     
Stability analysis of neutral-type nonlinear delayed systems: An LMI approach
Liu Mei-Qin
School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  The problems of determining the global asymptotic stability and global exponential stability for a class of norm-bounded nonlinear neutral differential systems with constant or time-varying delays are investigated in this work. Lyapunov method was used to derive some useful criteria of the systems’ global asymptotic stability and global exponential stability. The stability conditions are formulated as linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms. Moreover, for the exponentially stable system, the exponential convergence rates of the system’s states can be estimated by some parameters of the LMIs. Numerical examples are given to illustrate the application of the proposed method.

Key wordsConvergence rate      Generalized eigenvalue problem      Linear matrix inequality (LMI)      Nonlinear neutral system      Stability      Time delay     
Received: 02 November 2005     
CLC:  O175.14  
Cite this article:

Liu Mei-Qin. Stability analysis of neutral-type nonlinear delayed systems: An LMI approach. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 0, 7(101): 237-244.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2006.AS0237     OR     http://www.zjujournals.com/xueshu/zjus-a/Y0/V7/I101/237

[1]   Agarwal, R.P., Grace, S.R., 2000. Asymptotic stability of differential systems of neutral type. Applied Mathematics Letters, 13(8):15-19.
doi: 10.1016/S0893-9659(00)00089-6
[2]   Amemiya, T., Ma, W., 2003. Global asymptotic stability of nonlinear delayed systems of neutral type. Nonlinear Analysis, 54(1):83-91.
doi: 10.1016/S0362-546X(03)00052-X
[3]   Bellen, A., Guglielmi, N., Ruehli, A.E., 1999. Methods for linear systems of circuit delay differential equations of neutral type. IEEE Trans. on Circuits Systems I, 46(1):212-215.
doi: 10.1109/81.739268
[4]   Boyd, S.P., Ghaoui, L.E., Feron, E., Balakrishnan, V., 1994. Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia, PA.
[5]   Cao, D.Q., He, P., 2004. Stability criteria of linear neutral systems with a single delay. Applied Mathematics and Computation, 148(1):135-143.
doi: 10.1016/S0096-3003(02)00833-0
[6]   Fridman, E., 2001. New Lyapunov Krasovskii functionals for stability of linear retarded and neutral type systems. Systems and Control Letters, 43(4):309-319.
doi: 10.1016/S0167-6911(01)00114-1
[7]   Gahinet, P., Nemirovski, A., Laub, A.J., Chilali, M., 1995. LMI Control Toolbox—For Use with Matlab. The Math Works Inc., Natick, MA.
[8]   Hu, G.D., Hu, G.D., Zou, X.F., 2004. Stability of linear neutral systems with multiple delays: boundary criteria. Applied Mathematics and Computation, 148(3):707-715.
doi: 10.1016/S0096-3003(02)00929-3
[9]   Khargonekar, P.P., Petersen, I.R., Zhou, K., 1990. Robust stabilization of uncertain linear systems: quadratic stability and H control theory. IEEE Trans. on Automatic Control, 35(3):356-361.
doi: 10.1109/9.50357
[10]   Liao, X.F., Chen, G.R., Sanchez, E.N., 2002. Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach. Neural Networks, 15(7):855-866.
doi: 10.1016/S0893-6080(02)00041-2
[11]   Ma, W., Takeuchi, Y., 1998. Stability of neutral differential difference systems with infinite delays. Nonlinear Analysis, 33(4):367-390.
doi: 10.1016/S0362-546X(97)00546-4
[12]   Park, J.H., 2002. Stability criterion for neutral differential systems with mixed multiple time-varying delay arguments. Mathematics and Computers in Simulation, 59(5):401-412.
doi: 10.1016/S0378-4754(01)00420-7
[13]   Park, J.H., 2003. Simple criterion for asymptotic stability of interval neutral delay-differential system. Applied Mathematics Letters, 16(7):1063-1068.
doi: 10.1016/S0893-9659(03)90095-4
[14]   Park, J.H., Won, S., 1999. A note on stability of neutral delay-differential systems. Journal of the Franklin Institute, 336(3):543-548.
doi: 10.1016/S0016-0032(98)00040-4
[15]   Park, J.H., Won, S., 2000. Stability analysis for neutral delay-differential systems. Journal of the Franklin Institute, 337(1):1-9.
doi: 10.1016/S0016-0032(99)00040-X
[1] Mo Jia-qi. Quasilinear singularly perturbed problem with boundary perturbation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2004, 5(9): 1144-1147.
[2] Liu Mei-Qin. Stability analysis of neutral-type nonlinear delayed systems: An LMI approach[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(Supplement2): 237-244.