Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  0, Vol. 7 Issue (101): 174-180    DOI: 10.1631/jzus.2006.AS0174
Computer & Information Science     
Optimal multi-degree reduction of Bézier curves with G1-continuity
Lu Li-Zheng, Wang Guo-Zhao
Institute of Computer Graphics and Image Processing, Department of Mathematics, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  This paper presents a novel approach to consider optimal multi-degree reduction of Bézier curve with G1-continuity. By minimizing the distances between corresponding control points of the two curves through degree raising, optimal approximation is achieved. In contrast to traditional methods, which typically consider the components of the curve separately, we use geometric information on the curve to generate the degree reduction. So positions and tangents are preserved at the two endpoints. For satisfying the solvability condition, we propose another improved algorithm based on regularization terms. Finally, numerical examples demonstrate the effectiveness of our algorithms.

Key wordsBézier curve      Optimal approximation      Degree reduction      Degree raising      G1-continuity     
Received: 29 December 2005     
CLC:  TP391.72  
Cite this article:

Lu Li-Zheng, Wang Guo-Zhao. Optimal multi-degree reduction of Bézier curves with G1-continuity. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 0, 7(101): 174-180.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2006.AS0174     OR     http://www.zjujournals.com/xueshu/zjus-a/Y0/V7/I101/174

[1]   Ahn, Y.J., 2003. Degree reduction of Bézier curves with Ck-continuity using Jacobi polynomials. Computer Aided Geometric Design, 20(7):423-434.
doi: 10.1016/S0167-8396(03)00082-7
[2]   Ahn, Y.J., Lee, B.G., Park, Y., Yoo, J., 2004. Constrained polynomial degree reduction in the L2-norm equals best weighted Euclidean approximation of Bézier coefficients. Computer Aided Geometric Design, 21(2):181-191.
doi: 10.1016/j.cagd.2003.10.001
[3]   Chen, G.D., Wang, G.J., 2002. Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity. Computer Aided Geometric Design, 19(6):365-377.
doi: 10.1016/S0167-8396(02)00093-6
[4]   de Boor, C., Höllig, K., Sabin, M., 1987. High accuracy geometric Hermite interpolation. Computer Aided Geometric Design, 4(4):269-278.
doi: 10.1016/0167-8396(87)90002-1
[5]   Degen, W.L.F., 2005. Geometric Hermite Interpolation—In memoriam Josef Hoschek. Computer Aided Geometric Design, 22(7):573-592.
doi: 10.1016/j.cagd.2005.06.008
[6]   Eck, M., 1995. Least squares degree reduction of Bézier curves. Computer-Aided Design, 27(11):845-851.
doi: 10.1016/0010-4485(95)00008-9
[7]   Farin, G., 1983. Algorithms for rational Bézier curves. Computer-Aided Design, 15(2):73-79.
doi: 10.1016/0010-4485(83)90171-9
[8]   Farin, G., 2001. Curves and Surfaces for CAGD (5th Ed.). Morgan Kaufmann, San Francisco, p.81-93.
[9]   Fleishman, S., Drori, I., Cohen-Or, D., 2003. Bilateral mesh denoising. ACM Trans. on Graphics, 22(3):950-953.
doi: 10.1145/882262.882368
[10]   Forrest, A.R., 1972. Interactive interpolation and approximation by Bézier curve. The Computer Journal, 15(1):71-79.
[11]   Hu, S.M., Sun, J.G., Jin, T.G., Wang, G.Z., 1998. Approximate degree reduction of Bézier curves. Tsinghua Science and Technology, 3(2):997-1000.
[12]   Hu, S.M., Tong, R.F., Ju, T., Sun, J.G., 2001. Approximate merging of a pair of Bézier curves. Computer-Aided Design, 33(2):125-136.
doi: 10.1016/S0010-4485(00)00083-X
[13]   Szegö, G., 1975. Orthogonal Polynomials (4th Ed.). American Mathematical Society, Providence, RI, p.22-106.
[1] Zhen-fei Zhan, Jie Hu, Yan Fu, Ren-Jye Yang, Ying-hong Peng, Jin Qi. Multivariate error assessment of response time histories method for dynamic systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(2): 121-131.
[2] Nur Saaidah Abu Bakar, Mohd Rizal Alkahari, Hambali Boejang. Analysis on fused deposition modelling performance[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(12): 972-977.
[3] Zhi-long LI, Jun-jie CAO, Xiu-ping LIU, Zhi-xun SU. A code-based approach for labeling in complex irregular regions[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(10): 1450-1460.
[4] Ping ZHU, Guo-zhao WANG. Optimal approximate merging of a pair of Bézier curves with G2-continuity[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(4): 554-561.
[5] Jorge CARAVANTES, Laureano GONZALEZ-VEGA. Computing the topology of an arrangement of implicitly defined real algebraic plane curves[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(12): 1685-1693.
[6] Ya-juan LI, Li-zheng LU, Guo-zhao WANG. Paths of algebraic hyperbolic curves[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(6): 816-821.
[7] CAI Hong-jie, WANG Guo-jin. Constrained multi-degree reduction of rational Bézier curves using reparameterization[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(10): 1650-1656.
[8] ZOU Wan-hong, DING Zhan, YE Xiu-zi, CHEN Zhi-yang. Interactive point cloud blending by drag-and-drop[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(10): 1633-1641.
[9] WANG Jin, LU Guo-dong, LI Ji-tuo, CHEN Long, ZHANG Dong-liang. Pattern design on 3D triangular garment surfaces[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(10): 1642-1649.
[10] CAO Juan, WANG Guo-zhao. Relation among C-curve characterization diagrams[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(10): 1663-1670.
[11] LU Li-zheng, WANG Guo-zhao. A quadratic programming method for optimal degree reduction of Bézier curves with G1-continuity[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(10): 1657-1662.
[12] JUHÁSZ Imre. Vanishing torsion of parametric curves[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(4): 593-595.
[13] MO Guo-liang, ZHAO Ya-nan. A new extension algorithm for cubic B-splines based on minimal strain energy[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(12): 13-.
[14] ZHANG Xing-wang, WANG Guo-jin. A new algorithm for designing developable Bézier surfaces[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(12): 14-.
[15] CAO Yan-long, LIU Yu-sheng, MAO Jian, YANG Jiang-xin. 3DTS: A 3D tolerancing system based on mathematical definition[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(11): 4-.