Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2006, Vol. 7 Issue (5): 713-726    DOI: 10.1631/jzus.2006.A0713
Invited Speeches on Intelligent Video Communication: Adaptation and Collaboration     
Media-specific rate allocation in heterogeneous wireless networks
Jurca Dan, Frossard Pascal
Ecole Polytechnique Fédérale de Lausanne, Signal Processing Institute, Lausanne CH-1015, Switzerland
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  We address the problem of joint path selection and rate allocation in multipath wireless streaming, in order to optimize a media specific quality of service. We leverage on the existence of multiple parallel wireless services, in order to enhance the received video quality at a wireless client. An optimization problem is proposed, aimed at minimizing a video distortion metric based on sequence-dependent parameters, and transmission channel characteristics, for a given wireless network infrastructure. Even if joint optimal path selection and rate allocation is in general an NP complete problem, an in-depth analysis of the media distortion evolution allows defining a low complexity optimal streaming strategy, under reasonable network assumptions. In particular, we show that a greedy allocation of rates along paths with increasing error probability leads to an optimal solution. We argue that a network path should not be chosen for transmission, unless all other available paths with lower error probability have been chosen. Moreover, the chosen paths should be used at their maximum end-to-end bandwidth. These results are demonstrated for both independent network paths, and non-disjoint channel segments, in generic network topologies. Simulation results showed that the optimal rate allocation carefully trades off total encoding/transmission rate, with the end-to-end transmission error probability and the number of chosen paths. In many cases, the optimal rate allocation provides more than 20% improvement in received video quality, compared to heuristic-based algorithms.

Key wordsMultipath streaming      Path selection      Rate allocation      Video streaming     
Received: 10 December 2005     
CLC:  TN919.8  
Cite this article:

Jurca Dan, Frossard Pascal. Media-specific rate allocation in heterogeneous wireless networks. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(5): 713-726.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2006.A0713     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2006/V7/I5/713

[1] Hillestad Odd Inge, Jetlund Ola, Perkis Andrew. RTP-based broadcast streaming of high definition H.264/AVC video: An error robustness evaluation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(Supplement 1): 19-26.
[2] Liao Ning, Yan Dan, Quan Zi-Yi, Men Ai-Dong. Content-adaptive robust error concealment for packet-lossy H.264 video streaming[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(Supplement 1): 41-47.
[3] Ozbek Nukhet, Tunali E. Turhan. On optimal receiver buffer size in adaptive Internet video streaming[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(Supplement 1): 112-118.
[4] Feng Shun, Er Gui-Hua, Dai Qiong-Hai, Liu Ye-Bin. An optimal quality adaptation mechanism for end-to-end FGS video FGS video transmission[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(Supplement 1): 119-124.
[5] Rui Hua-Xia, Li Chong-Rong, Qiu Sheng-Ke. Evaluation of packet loss impairment on streaming video[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(Supplement 1): 131-136.
[6] Bouazizi Imed, Hannuksela Miska M., Rauf Usama. Coping with handover effects in video streaming over cellular networks[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(Supplement 1): 137-144.
[7] Park Sanghoon, Yoon Hayoung, Kim Jongwon. Network-adaptive HD MPEG-2 video streaming with cross-layered channel monitoring in WLAN[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(5 ): 25-.
[8] Liu Yu-xin, Kurceren Ragip, Budhia Udit. Video classification for video quality prediction[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(5 ): 29-.
[9] Vitali Andrea L., Borneo Antonio, Fumagalli Marco, Rinaldo Roberto. Video over IP using standard-compatible multiple description coding: an IETF proposal[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(5 ): 2-.
[10] Li Dan-jue, Zhang Qian, Chuah Chen-nee, Yoo Ben S.J.. Error resilient concurrent video streaming over wireless mesh networks[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(5 ): 4-.
[11] Zhu Xiao-qing, Singh Jatinder Pal, Girod Bernd. Joint routing and rate allocation for multiple video streams in ad-hoc wireless networks[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(5 ): 8-.
[12] Chakareski Jacob. Distributed media cooperation for enhanced video communication[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(5 ): 13-.
[13] Huang Jian-wei, Li Zhu, Chiang Mung, Katsaggelos Aggelos K.. Joint rate control and scheduling for wireless uplink video streaming[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(5 ): 16-.
[14] LIU Hao, ZHANG Wen-jun, YANG Xiao-kang. Unequal Forced-Intra-Refresh for robust video streaming[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(10): 11-.
[15] ZHU Xiao-liang, YANG Zong-kai, DU Xu, CHENG Wen-qing. Equation based rate control scheme for video streaming over wireless channels with link level ARQ[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(10): 12-.